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Abstract How to identify the critical links of the urban road

network for actual traffic management and intelligent trans-

portation control is an urgent problem, especially in the con-

gestion environment. Most previous methods focus on traf-

fic static characteristics for traffic planning and design. How-

ever, actual traffic management and intelligent control need

to identify relevant sections by dynamic traffic information

for solving the problems of variable transportation system.

Therefore, a city-wide traffic model that consists of three re-

lational algorithms, is proposed to identify significant links of

the road network by using macroscopic fundamental diagram

(MFD) as traffic dynamic characteristics. Firstly, weighted-

traffic flow and density extraction algorithm is provided with

simulation modeling and regression analysis methods, based

on MFD theory. Secondly, critical links identification algo-

rithm is designed on the first algorithm, under specified prin-

ciples. Finally, threshold algorithm is developed by cluster

analysis. In addition, the algorithms are analyzed and applied

in the simulation experiment of the road network of the cen-

tral district in Hefei city, China. The results show that the

model has good maneuverability and improves the shortcom-

ings of the threshold judged by human. It provides an ap-

proach to identify critical links for actual traffic management

and intelligent control, and also gives a new method for eval-

uating the planning and design effect of the urban road net-

work.
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1 Introduction

Links are components of urban road network systems that

significantly affect network performance. Specifically, the oc-

currence of traffic congestion and incidents in relevant sec-

tions reduces the operating efficiency of regional road trans-

port networks and increases travel delays and costs. There-

fore, scholars have extensively studied models of critical city-

wide links.

Generally, critical links [1–3] are defined as the sections

with the most significant effect on the connectivity and trans-

mission of road networks. The methods and models of crit-

ical link identification are different in various research and

application areas. Most methods focus on network topology

and vulnerability to explore the static structural characteris-

tics of road networks. Critical links are identified with impor-

tant section indicators to evaluate network accessibility and

reliability. Taylor et al. [4] proposed a heuristic method to

find significant road sections using a probabilistic approach.

According to this study, an increase in the number of sec-

tions as a result of a probabilistic approach leads to superior

relative utility and seriously influences network performance.

The author also utilized the loss of community amenity to

analyze the network vulnerability of major roads. Jenelius et

al. [5] established an approach to identify significant sections

on the basis of increasing the indicators of average travel time

on a network for each pair of origin-destination (OD) when

the weighted demand of links is closed. The approach was
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applied to the road network calculation of northern Sweden.

Scott et al. [6] analyzed the deficiency of the volume/capacity

indicator in critical link identification and proposed the net-

work robustness index indicator to evaluate overall system

performance. Qiang and Nagurney [7] developed a method

for measuring unified network performance to assess the im-

portance of links and nodes. Ji [8] defined traffic capacity,

road network topological structure, security and recurrent

congestion frequency, and time balance factors of traffic flow

as attributes for the identification of bottleneck links based

on a rough set. Sullivan et al. [9] identified and sorted signif-

icant sections according to different link capacity-block val-

ues. This method quantifies the robustness of the transport

network. Thereafter, several scholars [10,11,2,3] proposed

the relative accessibility index, critical section index for the

assessment of network topology vulnerability, total disrup-

tion delay time, and the variation index for the average trav-

eling distance to identify critical links. Such models are com-

monly used to identify critical links from static road networks

with traffic parameters of individual sections. However, they

are insufficient for reflecting the relevance of individual sec-

tions and the overall road network with dynamic traffic char-

acteristics. Therefore, these approaches may be suitable for

transportation planning, but they cannot be applied to traffic

dynamic management and intelligent control problems.

Aside from identifying critical links on the basis of net-

work topology and static traffic characteristics, other studies

have explored the identification of critical links with image

technology and MFD theory. Schintler et al. [12] identified

key links and nodes with the image technology of a geo-

graphic information system based on the grid and analyzed

road network resiliency via complex network theory. Such an

approach is still used to identify key sections on the basis of

static traffic data. Xu et al. [13] established a road network

simulation in Zhuhai District, Guangzhou City. Key sections

of the road network were selected by observing and compar-

ing the variations in MFD. Such an approach involves the use

of MFD theory to identify key sections but not the mathe-

matical model. Moreover, traffic managers still use empiri-

cal values to determine the threshold of identifying key sec-

tions and traffic state. For instance, Ma et al. [14,15] analyzed

a large-scale transportation network with deep learning the-

ory and used an artificial threshold (20 km/h) to divide traffic

state into congested and non-congested states. However, the

threshold calculation does not involve the use of a scientific

method. Therefore, a scientific and reasonable method for de-

termining threshold is urgently needed.

Although existing works have attempted to identify critical

links, they provide insufficient support for traffic managers to

rapidly discover the most critical links in a dynamic trans-

portation network and thereby implement strategies to miti-

gate traffic congestion. Therefore, the practical applications

of critical link identification technology are limited.

The objective of this work is to develop an approach to

identify critical links from dynamic transportation networks

for practical application in traffic management and control.

To reflect dynamic traffic characteristics, we introduce MFD

theory because of the following advantages:

1) MFD data are dynamic; thus, the traffic state of a road

network is dynamic.

2) The state of a road network and a single road is relevant.

Therefore, on the basis of MFD theory and the previous

works on identifying critical links, we analyze extensive ex-

perimental and actual MFD data to establish an MFD regres-

sion model and critical link identification model. Moreover,

we construct a road network traffic simulation model based

on real road network traffic data to inspect the critical link

identification model. Consequently, we provide a method for

extracting critical links from a dynamic transportation net-

work and an approach for evaluating the effect of road net-

work planning.

According to the research objective and scope described

above, this paper is organized as follows:

1) Section 2 briefly introduces MFD and its calculation

methods.

2) Section 3 describes critical link identification model in

detail. The maximum weighted traffic volume of MFD is cho-

sen as an index to calculate the threshold and to construct crit-

ical link identification algorithms on the basis of MFD theory

and regression and cluster analysis methods.

3) Section 4 illustrates experimental results and the imple-

mentation process. Algorithms are analyzed and verified with

traffic simulation experiments combined with actual network

traffic data on the central district of Hefei City.

4) Section 5 presents conclusions and directions for future

research.

2 MFD theory and calculation model

Daganzo and Geroliminis [16–18] proposed the early con-

cept of MFD. MFD is described as the relationship between

the traffic volume and the density of a road network and the

relationship between area weighted volume and the total traf-

fic amount of a network. MFD represents the network traffic

state as the relationship between the number of moving vehi-
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cles in the road network and the network operation level. Da-

ganzo and Geroliminis [16–18] analyzed and demonstrated

the existence of MFD using the traffic simulation data of

the San Francisco business district (USA), that of Nairobi

(Kenya), and the measured traffic data of Yokohama (Japan).

On the basis of the description of MFD, Zhang et al. [19]

further developed the theory of MFD. Relying on a stochastic

cellular automaton model, they compared the MFD of arterial

road networks, which were governed by three adaptive traf-

fic signal systems, under several boundary conditions. There-

fore, the authors identified the “hysteresis phenomenon” of

MFD under the traffic signal conditions.

Aside from the verification of the existence of MFD and

the “hysteresis phenomenon,” the calculation model of MFD

has also been also provided. Let i (i belongs to A) and li rep-

resent a road segment between adjacent intersections and its

length, respectively. Let A represent the set of road segments.

According to MFD theory, an MFD is formed and can be cal-

culated with the following equation (Eq. (1)).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where Q, qw, and kw are the total traffic volume, weighted vol-

ume, and weighted density of the road network, respectively,

and qu and ku are the unweighted volume and unweighted

density of the road network, respectively. qi, ki, and oi are the

volume, density, and time occupation rate of the link i, re-

spectively. s is the average effective length of the vehicle that

is generally set to 5.5m.

However, relatively few studies have explored the extrac-

tion of the critical links of a dynamic transportation network

with MFD theory. In the present study, we use MFD theory

to reflect the dynamic traffic characteristics of the relationship

between links and the road network. To obtain a well-defined

MFD, the “hysteresis phenomenon” effect is neglected.

3 Critical link identification model

3.1 Definition of critical link

To meet the requirements of dynamic traffic management and

control, we consider critical links as the set of all links that

can significantly affect the traffic state of a road network when

the links are removed from or added to a particular road net-

work. Therefore, critical links are defined as

N(x) = {x|ηx(Δkx,Δqx) � r, x ∈ D}, (2)

where x is the critical link. ηx is the distance value between

the extreme points of the original road network MFD and

the new road network MFD when a link is removed. r is the

threshold value. D is the set of links of the entire road net-

work.

3.2 Method

Our main objective is to extract critical links with signifi-

cant effects on the state of the dynamic transportation net-

work based on a well-defined MFD. We therefore develop a

mechanism to meet the following goals:

1) To neglect the “hysteresis phenomenon” effect and mini-

mize the variance in link densities to guarantee a well-defined

MFD of a transportation network.

2) To extract a set of links with significant effects on the

smooth-congested state of the road network.

3) To develop a threshold determination method with sta-

tistical analyses instead of human judgment.

On the basis of the aforementioned goals, we design a crit-

ical link identification mechanism that consists of three con-

sequent algorithms. First, we build an MFD shape model and

extract the weighted traffic flow and weighted traffic density

through a regression analysis based on MFD data. In this

step, we produce a network traffic simulation environment

with our own simulation software while minimizing the dif-

ference in the traffic densities of adjacent networks according

to the measured network traffic data on the central district

of Hefei City, China. Moreover, a multiple nonlinear regres-

sion algorithm is utilized to determine a favorable MFD curve

that can extract the major parameters reflecting the smooth-

congested state of the road network. Second, we compare the

variable values of the MFD weighted volume and unweighted

density before and after the removal of the links from the

road network to extract the critical links. In this step, we use

the Pythagorean theorem and comparative analysis to analyze

the moving distance of the inflection point of the smooth-

congested state before and after the link removal. Finally,

we arrange the moving distances of the inflection points of

the smooth-congested state for each link in descending order

to identify the threshold of the critical links. In this step, k-

cluster analysis, which can efficiently classify sample data,
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is utilized to determine the threshold. The threshold of the

critical links is the value between the first cluster and the

second cluster. Moreover, a number of clusters, which show

good maneuverability, can be inputted according to the needs

of traffic management and control or those of road network

planning. In addition, our approach is examined through a

simulation of an actual road network in Hefei, China.

The critical link identification mechanism and relevant

models are described in the following sections.

3.2.1 Weighted traffic flow and unweighted density extrac-

tion algorithm

A large volume of traffic simulation and real data show that

the basic shape of the MFD curve approximates a quadratic

curve distribution. As shown in Fig. 1(a), Daganzo [16] illus-

trated the MFD of a business district in San Francisco (USA)

with simulation data. As shown in Fig. 1(b), Geroliminis and

Daganzo [18] displayed the MFD of a business district in

Yokohama (Japan) with real floating car data. As shown in

Fig. 1(c), Xu et al. [13] displayed the MFD of the Zhu Hai

District in Guang Zhou City (China) with simulation data. As

shown in Fig. 1(d), Geroliminis et al. [20] displayed a three-

dimensional vehicle MFD (3D-vMFD) points for bi-modal

traffic with simulation data. These MFD figures indicate the

existence of a regular pattern of the traffic state of a road net-

work from free flow to congested flow. Moreover, the inflec-

tion point of the traffic state conversion can be calculated via

statistical analyses.

On the basis of previous studies on MFD, we assume that

the basic shape of the road network MFD is quadratic. There-

fore, the MFD distribution curve is fitted with the multi-

variate nonlinear regression analysis method. Through this

method, the regression relationships of the functions between

the dependent variables and the multiple independent vari-

ables are established through statistics based on observation

data. However, building and calculating the multivariate non-

linear regression model of the road network MFD is difficult.

Therefore, the multivariate linear regression model is utilized

with the following equation (Eq. (3)) to reduce the difficulty

of model construction:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = β0 + β1x1 + β2x2 + ε,

y = qw,

x1 = (ku)2,

x2 = ku,

(3)

Fig. 1 MFD curves from previous findings. (a) MFD in San Francisco (USA); (b) MFD in Yokohama (Japan); (c) MFD in Zhu Hai district of
Guang Zhou City (China); (d) The 3D-vMFD points for bi-modal traffic
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where y is equal to the traffic weighted volume of the road

network. β0, β1, and β2 are the regression coefficients, which

can be calculated with the least squares method according to

the experimental data. x1 and x2 are equal to the unweighted

traffic density squared and the unweighted traffic density of

the road network, respectively. ε denotes the random error.

Calculation becomes relatively simple when we turn the

MFD distribution curve into the multivariate linear regression

model. However, the regression coefficients β0, β1, and β2

need to be approximated to make the model resemble the ex-

perimental road network MFD curve closely. Therefore, we

set R2 (R2 � 1) as the optimized fitting coefficient to test the

regression effect. A large R2 equates to a good fit. Moreover,

the regression model is close to the MFD distribution curve

of the road network. R2 can be calculated with the following

equation (Eq. (4)):

R2 =

N∑

i=1

(ŷi − y)2

N∑

i=1

(yi − ŷi)
2

+

N∑

i=1

(ŷi − y)2. (4)

After the best fitting model is achieved with a large pro-

portion of the experimental traffic data, Eq. (3) can be turned

into the multivariate nonlinear regression model of the road

network with the following equation (Eq. (5)):

qw = β0 + β1(ku)2 + β2ku + ε. (5)

The traffic states of the road network evolve from the

smooth state to the congested state at point (ku
0, qw

0 ) of the

MFD curve, where ku
0 and qw

0 are the extreme unweighted

density and weighted volume of the road network, respec-

tively. Therefore, we consider the point (ku
0, qw

0 ) as the inflec-

tion point of the network traffic state transition and select it as

a significant factor to judge the effect of key sections on the

traffic state of a road network. From Eq. (5), we can deduce

the extreme unweighted density and weighted volume of the

network MFD with the following equation (Eq. (6)).

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ku
0 = −

β2

2β1
,

qw
0 =

4β0β1 − β2
2

4β1
.

(6)

3.2.2 Critical link identification algorithm

The first step in identifying the critical links from dynamic

traffic characteristics is the construction of the weighted traf-

fic flow and unweighted density extraction algorithm. After

completing the first step, we identify an appropriate method

to construct the critical link identification algorithm model.

Several rules are developed to identify critical links.

1) Critical links are identified by comparing the changes in

traffic states before and after the addition or removal of a link

in the road network. The changes in traffic states are deter-

mined with the variations in the extreme unweighted density

and weighted volume of the road network. The variation in

the extreme unweighted density of the road network can rep-

resent advancement or delay when the road network reaches

a congested state, which is denoted as Δki. The variation in

the extreme weighted volume of the road network can repre-

sent the change in the total traffic volume of the road network,

which is denoted as Δqi.

2) We assume that the total traffic OD demand of the road

network is consistent when adding or removing a link in the

road network.

3) We set the functions Δki and Δqi as variations of the ex-

treme unweighted density and weighted volume of the road

network, respectively. If the value of the function exceeds a

predetermined threshold value, the link i is judged as a key

section of the road network.

To obtain the maximum degree of the links that affect the

whole road network traffic state, we must consider Δki and

Δqi. Therefore, we choose a straight line distance between

the inflection points before and after removing the section as

an important indicator to generate the function, which can be

calculated according to the following equation (Eq. (7)):

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ηi(Δki,Δqi) =
√

Δk2
i + Δq2

i ,

Δki = ku
0 − ku′

i0 ,

Δqi = qw
0 − qw′

i0 ,

(7)

where ηi(Δki,Δqi) is the variation of the extreme unweighted

density and weighted volume of the road network. ku
0 and qw

0

are the extreme unweighted density and weighted volume of

the original road network, respectively, and ku′
0 and qw′

0 are

the extreme unweighted density and weighted volume of the

road network, respectively, when adding or removing the link

i from the original road network.

Critical links can be identified through the following equa-

tion (Eq. (8)):

⎧
⎪⎪⎨
⎪⎪⎩

ηi(Δki,Δqi) � r, the link i ∈ C;

ηi(Δki,Δqi) < r, the link i � C,
(8)

where r is the threshold value and C is the set of critical

links of the urban road network. Δqi and Δki can be calcu-

lated through the experimental traffic simulation data.
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From this step, all sections are classified into two sets ac-

cording to Eq. (8). One set is the set of critical links, and the

other set is the set of non-critical links. The purpose of identi-

fying key sections from the dynamic traffic characteristics is

achieved in this step. However, the critical link identification

algorithm is not perfect. Traffic managers frequently judge

the threshold value r instead of performing a rational scien-

tific calculation. To compensate for this deficiency, we focus

on establishing the threshold algorithm on the basis of cluster

analysis.

3.2.3 Threshold algorithm

In a complex network evolution mechanism, road grade

emergence is the intrinsic property of the road network and

the inevitable result of the self-organization of network traffic

[21,22]. On the basis of the idea of road grade emergence, we

classify the links of the road network with cluster analysis to

avoid the inaccurate determination of the threshold value by

traffic managers. The reasons for applying the cluster analysis

method in the threshold determination are as follows:

1) Cluster analysis is a scientific classification method

based on statistical data.

2) Cluster analysis avoids the arbitrary and inaccurate

threshold determined by traffic managers.

3) Cluster analysis is quick and efficient.

Based on cluster analysis, the main calculation rules of the

threshold algorithm are as follows:

1) We arrange ηi(Δki,Δqi) in descending order to form an

ordered set, which is recorded as {ηi(Δki,Δqi)}.

2) The threshold value r is extracted by classifying

{ηi(Δki,Δqi)} with cluster analysis. A sample data set is di-

vided into k clusters from the beginning of the initial division.

The criterion function is optimized with a repeat control strat-

egy. Each cluster can be represented by the centroid point or

the object closest to the center. We use the k-means cluster-

ing algorithm to improve the computational efficiency of road

classification because the algorithm achieves good scalability

and fast convergence. In the algorithm, each cluster is rep-

resented by a centroid. The remaining objects are allocated

to the most similar cluster in terms of the distance between

the objects and the centroid of the cluster. Then, the new cen-

troid of each cluster is repeatedly calculated until the criterion

function is converged.

According to the grade level of urban road network plan-

ning or intelligent traffic control requirements, we assume

that traffic managers divide links into k clusters to extract key

links. k is set to be the same as the number of grade levels

or controlling levels of urban road planning to facilitate the

optimal adjustment of road grade or the control of critical

sections preferentially. Although the required manual inter-

vention to determine k is minimal, the threshold calculation

method is still better than the previous threshold r determined

by human experience.

The critical links extracted by our model are the set of links

with the greatest influence on the traffic state of the road net-

work. After k is determined, the threshold value r can be cal-

culated as follows:

1) Select the centroid c1, c2, . . . , ck as the initial cluster cen-

ters.

2) Assign each object to the cluster with the smallest dis-

tance between the object and the cluster. Each cluster is rep-

resented by the mean of all objects. For each point vi(vi =

ηi(Δki,Δqi), find a centroid c j to achieve the minimum dis-

tance between vi and c j. Then, assign vi to the j group.

3) Recalculate the centroid c j of each group after all points

are assigned to the appropriate group.

4) Repeat steps 2 and 3 until the divided data do not

change.

5) Find the boundary value of the first class and second

class on the basis of the results of the cluster analysis. The

threshold value r is equal to the boundary value. The follow-

ing is an explanation for why we choose the boundary value

of the first class and second class as the threshold value: we

define the links with the greatest impact on the traffic state of

the road network as the key sections; the links that belong to

the first class show the strongest effect on the network traffic

state.

This calculation method of the threshold value improves

scientific calculation and retains the rationality of human in-

tervention because the initial classification depends on traffic

managers.

3.3 Boundary conditions

When the critical link identification model is implemented,

several rules should be followed:

1) The critical link identification model is constructed with

MFD theory and the calculation model. Therefore, the net-

work traffic system must satisfy the conditions of MFD exis-

tence proposed by Daganzo, that is, the entire road network

should be either congested or clear.

2) The “hysteresis phenomenon” effect is not considered

when we fit the MFD curve of the road network.

3) The implementation principle is that the impact of traf-

fic state is estimated when removing or adding a section of
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the road network. The total effect is neglected when deleting

or adding multiple sections.

3.4 Other instructions

Although the identification model of critical urban links with

MFD comprises three algorithms and several parameters,

their effect on the final result is not satisfactory because of

the following reasons. MFD is a unique transport property

of the road network in the macroscopic traffic model, which

involves numerous parameters. In the study of traffic mod-

els, algorithms and numerous parameters combined by a ba-

sic transportation model and other algorithms are frequently

used. Other studies showed that the use of multiple algo-

rithms and parameters has little influence on the final results.

For instance, Ji et al. [23] proposed three algorithms and nu-

merous parameters to separate urban transportation networks

in space on the basis of the MFD model. Ma et al. [15] pro-

posed a long short-term memory neural network (LSTM NN)

model to predict traffic speed; the traffic model and LSTM

NN model both involve a large number of parameters.

4 Implementation

4.1 Implementation procedure

We conduct the following procedure to apply and compare

the effects of the critical link identification model.

1) Obtain the traffic flow, speed, and density data of each

link on the basis of the GPS data of taxis and the analysis data

of video detectors in the network. We retrieved the input data

of our simulation network from the GPS data of 2 000 taxis

and the analysis data of 300 video detectors. The GPS and

analysis data covered the entire Hefei central network from

April 6, 2016 at 0:00 to April 7, 2016 at 0:00.

2) Build a traffic simulation model and experimental envi-

ronment with traffic simulation software on the basis of the

transportation infrastructure data of the central district road

network in Hefei City. The traffic simulation software in-

cludes the dynamic traffic assignment (DTA) model, which

scientifically ensures the reallocation of traffic flow in the

same OD condition. Therefore, when link i is deleted in the

same OD conditions, the experimental data can be exported

from the traffic simulation model and utilized to analyze crit-

ical links with the identification model.

3) Fit the MFD curve, and extract the set of inflection

points (ku
0, q

w
0 ) for each link of the simulation road network

with the weighted traffic flow and density extraction algo-

rithm on the basis of the experimental data.

4) Calculate Δki,Δqi, and ηi(Δki,Δqi) with the critical link

identification algorithm.

5) Arrange ηi(Δki,Δqi) in descending order to obtain the

threshold value r by employing the threshold algorithm with

computer calculation.

6) Compare the results of the critical link identification

with the road network planning schematics to verify the iden-

tification effect and analyze the differences.

4.2 Simulation road network description

The road network used for the simulation is located in the

central district of Hefei City (see Fig. 2), which belongs to

Ahhui province of China. The road network has an area of

800km2, and it includes 203 intersections and 354 sections

with lengths ranging from 111m to 1600m. The number of

two-way lanes per section ranges from two to eight. The free

speed of the traffic flow is about 30km/h. The traffic signal

system comprises a given cycle control of multi-phases, and

the cycle time often ranges from 60s to 180s.

Fig. 2 The central district location in Hefei city and the area of simulation
road network

The data of the simulated experimental road network ap-

proximate the actual road network data. The simulation time

is 24h with 5min intervals.

4.3 Results from the experimental data

4.3.1 MFD of the simulation road network

First, the traffic flow, average speed, and density data of each

link are obtained from the GPS data of 2 000 taxis and the

analysis data of 300 video detectors in the central network of

Hefei City. The 24h data were retrieved from two different

sources (April 6, 2016):

• Fixed sensors: 300 video detectors located in the middle

of the arterial lanes in the area with 5min traffic flow counts
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and average speed measurements.

• Mobile sensors: 2 000 taxis equipped with GPS or

other positioning devices, which reported vehicle position

and other data, including time stamps.

The weighted volume qw per hour and its unweighted den-

sity ku are calculated with Eq. (1) on the basis of the real data

of the central district of Hefei City. Figure 3 shows the scatter

plots of qw-ku and demonstrates the existence and basic shape

of an MFD for the simulation road network.

Fig. 3 The analysis result of the entire central district network MFD of
Hefei city (qw-ku curve): weighted average volume vs. un-weighted average
density

Second, the simulation road network is designed according

to the actual central district network of Hefei City to obtain

the reallocated weighted average volume and unweighted av-

erage density of the new road network using the DTA model

when link i is deleted. Detectors are set up in each link of the

simulation road network to aggregate the mean speed of all

vehicles, the traffic flow, and other relevant traffic data with

5min intervals. Figure 4 shows the scatter plots of qw′-ku′ of

the new network MFD when link 1 is deleted.

In the same manner, we obtain all qw′
i -ku′

i of the new net-

work when the link i alone is removed from the simulation

network.

Fig. 4 The analysis result of the new central district network MFD of Hefei
city when link 1 was deleted (qw′

i -ku′
i curve): weighted average volume vs.

un-weighted average density

4.3.2 Results of weighted traffic flow and unweighted den-

sity

After verification of the existence of MFD in the central dis-

trict network of Hefei City, the MFD curve is fitted to extract

the weighted traffic volume and unweighted density with the

weighted traffic flow and density extraction algorithm.

In this step, the scatter points of qw and ku are analyzed via

regression analysis with computer calculation.

Figure 5 depicts the MFD fitting curve, fitting coefficients,

and optimized coefficient.

Fig. 5 MFD fitting curve, fitting coefficients and optimized coefficient of
simulation network (β0 = −351.632, β1 = −0.11, β2 = 49.654, R2 = 0.988)

From Fig. 5, we can obtain the best fitting coefficients β0,

β1, and β2. According to Eqs. (3) and (5), the best fitting curve

of the MFD for the simulation road network can be repre-

sented by the following equation with R2 = 0.988:

qw = −351.632− 0.11(ku)2 + 49.654ku + ε. (9)

Using Eq. (6), we calculate the extreme weighted traffic

volume and unweighted density as the following values (Eq.

(10)) according to the previous equation of the MFD curve

for the simulation network:

⎧
⎪⎪⎨
⎪⎪⎩

ku
0 = 226 pcu/km,

qw
0 = 5265 pcu/h.

(10)

Similarly, according to the data in Fig. 4, we obtain the

weighted average volume and unweighted average density of

the new MFD as the following values when link 1 is removed:

⎧
⎪⎪⎨
⎪⎪⎩

ku
10 = 229.96 pcu/km,

qw
10 = 5292.64 pcu/h.

(11)

With the same method, we obtain the other weighted aver-

age volume and unweighted average density of the new MFD

when link i is deleted.
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4.3.3 Results of the threshold and critical links

According to the definition of critical links in this work, Δqi,

Δki, and ηi(Δki,Δqi) are calculated with Eq. (7) to obtain

the critical links, which can significantly influence the traf-

fic state of the road network.

Figure 6 illustrates the distance between the original net-

work and the new network when link 1 is removed.

Fig. 6 The distance η1(Δk1 ,Δq1) between the original network and the new
network when link 1 was removed

Figure 6 shows that the distance between the original net-

work and the new network when link 1 is removed is 28.

When all the distances ηi(Δki,Δqi) are calculated, ηi(Δki,Δqi)

are sorted in descending order to form the sequence set

{ηi(Δki,Δqi)}.

In China, the urban road network is generally divided by

the Planning Bureau into four grades. Therefore, we set the

cluster number to 4. Comparing the classification results with

the road grade of road network planning is convenient.

Finally, Fig. 7 depicts the classification results, which are

the outputs based on the computer calculation.

Figure 7 shows that 60 critical links with significant effects

on both the total traffic capacity and traffic state variation are

identified for the simulated road network. Furthermore, we

can obtain a threshold value of 127.8. Moreover, we find links

with little impact on the whole road network.

4.3.4 Comparative analysis of the results of our model and

the road network plan

From Fig. 7, we obtain the critical links of the simulation

road network identified with the proposed critical link iden-

tification model. To compare the proposed model with the

urban road network plan, we use the Hefei Urban Master

Plan (2006–2020) from the Hefei Municipal Planning Bureau

website. Figure 8 depicts the urban road grade of the central

network of the plan.

Fig. 7 Critical links defined by {ηi(Δki,Δqi)} of simulation experimental
network

Fig. 8 Urban road grade of central network from the Hefei Urban Master
Plan (2006–2020)

In the plan, 140 trunks significantly influence the whole

simulation network. However, the critical links of the plan
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and the results of the proposed model are not fully consis-

tent.

By comparing Figs. 7 and 8, we find that 47 critical links

are consistent with the Hefei Urban Master Plan (2006–

2020), whereas most of the remaining sections are fewer than

those in the plan.

This finding may be explained as follows. Fig. 7 depends

on the actual traffic OD and dynamic traffic data. The results

are based on the real detected data, which differ from the ex-

pected traffic OD. By contrast, Fig. 8 depends on the expected

traffic OD. The expected OD is obtained through predictions

of the traffic planning model, which contains artificial data

analyzed via artificial experience.

Therefore, a significant gap exists between our results and

the planning results. Obviously, the results of our model

are close to actual traffic conditions. Traffic managers can

quickly and conveniently identify intelligent traffic control

sections to be prioritized from the dynamic traffic state. The

significant gap in the road classification indicates the differ-

ence between the actual OD and forecast OD. Our critical

link identification model compensates for the shortcoming of

the road classification divided by the expected OD of the ar-

tificial forecast. Furthermore, the practical data and scientific

optimization method of our approach can support urban plan-

ners in adjusting road grade classification. Thus, our results

provide a new method for evaluating adjustments in the road

level plan of an urban road network.

5 Conclusions and discussion

In this work, we introduced MFD theory and proposed a crit-

ical link identification model with consideration of dynamic

traffic characteristics. We investigated the actual data of the

central district network in Hefei City, including the road fun-

damental data, traffic parameter data, and signal timing of the

network. We constructed the simulation network according

to the investigation data and extracted experimental data. We

analyzed the real detected data and experimental data with

mathematical statistics software and finally obtained the re-

sults related to the critical links. We found that the critical

links of the road network plan and those of our model were

not fully consistent. Our model showed that most of the crit-

ical links exert the most significant effect on the total traf-

fic capacity and traffic state variation. Our model thus allows

traffic managers to quickly identify priority control segments.

Furthermore, our model provides a new method for evaluat-

ing the planning and design of urban road networks from the

perspective of dynamic traffic characteristics. On the basis of

our results and our comparison with the road network of the

Hefei Urban Master Plan, we found that our model is adapt-

able to practical applications because of the variable cluster

and threshold algorithm for traffic management variability.
However, our model requires the following conditions:
1) The entire network should be either congested or clear.
2) The “hysteresis phenomenon” effect is not considered

when fitting the MFD curve of the road network.
3) The impact of traffic state is estimated when removing

or adding a section of the road network.
In our next study, our model can be improved by analyzing

the influence of multiple sections on the entire network and

by simplifying the calculation through dimension reduction.
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