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ABSTRACT
Fastest Route Recommendation (FRR) aims to find the fastest

path in response to user’s queries in a large complex road network.
Early studies cast the FRR task as a pathfinding problem on graphs
and adopt heuristic algorithms as the major solution due to the
efficiency and robustness. A major problem of heuristic algorithms
is that the heuristic function is usually empirically set with simple
methods, which is difficult to model other useful factors. In this
paper, we extend the classic A∗ algorithm for the FRR task by mod-
eling complex traffic information with neural networks. Specially,
we identify an important factor that is important to improve the
FRR task, i.e., the estimation of travel time. For this purpose, we first
develop a module for predicting the time-varying traffic speed for a
road segment, which is the foundation for estimating the travel time.
Conditioned on this module, we further design another module to
estimate the fastest travel time between two locations connected by
routes. We adopt neural networks to implement both modules for
enabling the capacity of modeling complex traffic characteristics
and dynamics. In this way, the original two cost functions of A∗
algorithm have been set in a more principled way with neural net-
works. To our knowledge, we are the first to use neural networks
for improving A∗ algorithm in the FRR task. It elegantly combines
the merits of A∗ algorithm and the powerful modeling capacities
of neural networks for the FRR task. Extensive results on the three
real-world datasets have shown the effectiveness and robustness of
the proposed model.
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1 INTRODUCTION
Due to global urbanization, people have increasing demands 

for accurate and real-time navigational information through the 
complex road network. To better facilitate the travel of users, fastest 
route recommendation (FRR) has become an important task in ur-
ban computing. Given the road network and corresponding traffic 
condition information, FRR aims to generate a or several fastest 
route suggestions on instant queries about the path planing from a 
source to a destination [4, 6, 9, 27–29]. It is challenging to perform 
effective pathfinding in a large road network, since it requires a 
comprehensive consideration of real-time and historical traffic data 
according to road network information.

Early studies cast the FRR task as a pathfinding problem on 
graphs and solve this task via heuristic search [6, 9, 16], e.g., Dijkstra 
and A∗ algorithms. Due to its efficiency and robustness, heuristic 
search has become one of the main solutions for the FRR task. A 
key point of these work is to develop an effective heuristic func-
tion. Take A∗ algorithm as an example. It aims to find a path to the 
given destination node resulting in the smallest cost. A∗ evaluates 
a candidate node n based on a cost function f (n), which will be 
decomposed into two parts, namely the observable cost from the 
source to the evaluation node д(n) and the estimated cost from the 
evaluation node to the destination h(n). h(n) is often called heuristic 
function, which needs to be set according to specific tasks. The 
effectiveness of h(n) directly determines the final performance of 
A∗ algorithm. With suitable heuristics, heuristic algorithms can sub-
stantially reduce the search space and obtain high-quality responses. 
However, traditional heuristic search algorithms usually require 
to set the heuristic function manually or using simple statistical 
methods [6, 9, 9, 16, 22], which limits the flexibility and extensibility. 
It will be difficult to integrate other influencing factors or useful 
components in heuristic search algorithms.

As shown in previous studies [4, 6, 9, 27–29], an important factor 
to improve the route recommendation performance is to accurately 
acquire the travel time between two locations in a road network. 
Travel time is particularly useful for the route planing task. For ex-
ample, in A∗ algorithm, the essence of h(n) function is to estimate an 
effective cost (i.e., travel time cost for the FRR task) from the current
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evaluation node to the destination node. However, the travel time
is usually unavailable and difficult to be predicted, since the traffic
condition is varying over time. Therefore, an ideal FRR method
should have the capacity of predicting the travel time according
to real-time traffic condition, and further make more reliable rec-
ommendation based on its predictions. Following this idea, if we
were able to integrate heuristic search algorithms with travel time
prediction models, can we develop a more effective FRR method?

To implement such a method, there are at least three challenges
to address. First, heuristic search algorithms are general algorithm
framework, and it is difficult to integrate predictivemodules into the
framework. Second, supposing that we can obtain the estimation
related to travel time from the predictive modules, it is not clear how
to fully utilize such useful information to guide the search process.
Third, although travel time prediction has been extensively studied
in the literature [4, 6, 9, 27–29], they have seldom been studied in
the FRR task. It needs to develop an effective predictive module for
the FRR solution as a whole.

To address these difficulties, we propose to integrate A∗ algo-
rithm with neural network based on travel time estimation for
solving the FRR task. Given the fact that a route consists of a se-
quence of road segments, we identify a primary technical difficulty
for estimating the travel time through a route, i.e., the prediction of
the traffic speed for a road segment. For a road segment, we do not
assume a static speed, since there would be significant speed varia-
tion at different time under time-varying traffic condition. For this
purpose, we first develop a module for predicting the time-varying
traffic speed for a road segment, which can be used to compute
the time for passing a road segment. For effectively capturing the
complex traffic characteristics, we jointly characterize short-term
trend, long-term temporal patterns and spatial influence. To further
estimate the travel time, we develop another module to estimate the
fastest travel time between two locations connected by routes. We
adopt neural networks to implement both modules for enabling the
capacity of modeling complex traffic characteristics and dynamics.

After obtaining the predicted travel speed of a road segment,
we can set д(·) by adding the existing time cost with the time
through a candidate road segment towards the evaluation node.
Furthermore, we can set h(·) with the cost from a candidate node
to the destination using the estimated travel time between them.
In this way, the original two cost functions have been set in a
more principle way with neural networks. After that, we perform a
standard search procedure of A∗. It elegantly combines the merits
of A∗ algorithms and the powerful modeling capacities of neural
networks for the FRR task. Although the heuristics are learned from
neural networks, we have shown that it is able to achieve a high
probability to identify the optimal route under some reasonable
assumptions.

To the best of our knowledge, we are the first to use neural net-
works for improving A∗ algorithm in the FRR task. Our approach is
able to automatically learn the cost functions without handcrafting
heuristics. It is able to effectively predict the arrival time through a
road segment and a distant pair of locations. The two components
are integrated in a joint model for deriving the evaluation cost.
Extensive results on the three real-world datasets have shown the
effectiveness and robustness of the proposed model.

2 RELATEDWORK
Our work is related to the following three research directions.

Traffic Speed Prediction.With the development of traffic sensors
and GPS-enabled devices, the task of traffic spped prediction has
received much attention from the research community [8, 11, 12,
24, 26], which aims to predict the average vehicle speed of roads
at a certain period of time. In the literature, various deep learning
methods have been developed for traffic speed prediction, including
recurrent neural network (RNN) [12, 26], convolution and graph
convolution network (GCN) [11, 21, 24] and deep belief network
(DBN) [8]. Traffic speed prediction model is an important com-
ponent of our work, and the novelty lies on capturing long term
temporal pattern and complex spatial influence by dilated causal
convolution and direction-sensitive graph attention network.

Fastest Route Recommendation. With the availability of traf-
fic condition information and corresponding road network, many
efforts have been devoted to the task of fastest path recommen-
dation [4, 6, 9, 15, 27–29]. This take aims to find the fastest path
between the source and destination locations. In the literature,
various search algorithms have been developed for route recom-
mendation, including time-dependent search algorithm [27–29] and
improved A∗ algorithm [6, 9]. Early studies focus on modeling the
travel time distribution of every road segment based on historical
information with shallow models [6, 28, 29]. More recently, some
researchers predict travel time of every road based on real time
traffic information and find fastest path based on prediction [15, 27].

Machine Learning for Heuristic Search. These studies in this
direction aim to automatically improve or optimize the search al-
gorithms with machine learning methods. Early works include the
use of machine learning in creating effective, likely-admissible or
improved heuristics [5, 10, 17]. More recently, deep learning has
significantly pushed forward the research of this line. The main
idea is to leverage the powerful modeling capacity of neural net-
works for improving the tasks that require complicated solving
strategies, including the Go game [19] and Atari games [13]. Our
work is highly inspired by these pioneering works, but have a quite
different focus on the studied task, i.e., fastest route recommenda-
tion. Our task itself involves specific research challenges that make
the reuse of previous works impossible.

3 PROBLEM FORMULATION
In our task, we assume road network information is available as

input, which is the foundation of traffic communication for users.

Definition 1. RoadNetwork. A road network is a directed graph
G = (L, E), where L is a vertex set of locations and E ⊂ L×L is an
edge set of road segments. A vertex li ∈ L ( i.e., a location) represents
a road junction or a road end. An edge e = ⟨li , lj ⟩ ∈ E represents a
directed road segment from vertex li to vertex lj .

Definition 2. Time-Varying Road Speed. Given a road seg-
ment e , its traffic speed ve (t) is modeled as time-varying variable,
measuring the flow speed of traffic at time t .

In mathematics, ve (t) can be viewed as a real-value function
of road speed w.r.t. time t , in which t can be either continuous or
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discrete. Here, for simplicity, we rewrite this notation as ve,t by
assuming t is discrete.

Definition 3. Route. A route (a.k.a., a path) p is an ordered
sequence of road segments connecting the source location ls with the
destination location ld withm intermediate locations, i.e., p : ls

e0
−→

l1
e1
−→ ...

em−1
−→ lm

em−1
−→ ld , where each pair of consecutive locations

⟨li , li+1⟩ corresponds to a road segment ei = ⟨li , li+1⟩ in the road
network.

With the above prelimenaries, we now define the studied task.

Definition 4. Fastest Route Recommendation (FRR). Given
a road network and corresponding historical traffic speed data D, for
a query q : ⟨ls , ld , tstar t ⟩, we would like to infer the fastest route
p∗ ( i.e., the path with the least travel time) from ls to ld with the
departure time tstar t given the time-varying traffic condition.

Different from traditional studies on fastest path recommenda-
tion [4, 6, 9, 15, 27–29], we do not assume a static traffic condition
(i.e., the road speeds of all the road segments are fixed or known
beforehand). We aim to develop a more practical solution to the
FRR task.

4 FASTEST ROUTE RECOMMENDATION
WITH HEURISTIC A∗ SEARCH

As shown in [4, 6, 9, 27–29], the task of FRR can be framed as
a graph-based search problem. In this setting, we view the road
network as a graph, and study how to find possible route(s) that
start from the source node and end at the destination node.

Reviewing A∗ Algorithm. In the literature [7], A∗ search algo-
rithm is widely used in pathfinding and graph traversal due to its
performance and accuracy. Starting from a source node of a graph,
it aims to find a path to the given destination node resulting in
the smallest cost. It maintains a tree of paths originating at the
source node and extending those paths one edge at a time until its
termination criterion is satisfied. At each extension, A∗ evaluates a
candidate node n based on a cost function f (n)

f (n) = д(n) + h(n), (1)

where д(n) is the cost of the path from the source to n (we call it
observable cost since the path is observable), and h(n) is an estimate
of the cost required to extend the future path to the goal (we call it
estimated cost since the actual optimal path is unknown). The key
part of A∗ is the setting of the heuristic function h(·), which has an
important impact on the final performance.

Setting д(·) and h(·). In our task, it is relatively straightforward to
set the д(·) function by summing over the time costs of all the ob-
servable road segments. Assume a partial route has been generated,
i.e., p : ls → l1 · · · → li , we can compute the observable cost of a
candidate li+1 for extension as

д (ls → li+1) =
i∑

k=1
Time (lk → lk+1 |tk ,q) , (2)

= Cls→li + Time(li → li+1 |ti ,q),

where Cls→li is a constant value since the trajectory has been
observed. To set the above formula, we need to estimate the time

cost from li to li+1 at departure time ti , i.e., Time(li → li+1 |ti ,q).
Furthermore, to set h(·), we need to estimate the future cost from
li+1 to the destination ld , i.e.,h(li → ld ). In practice, many heuristics
have been adopted to set both д(·) and h(·), including the shortest
spatial distance [7, 14] and the historical likelihood [22].

Potential Issues. A key component of A∗ algorithm is the future
cost function h(·). Unlike other traffic-related tasks, the FRR task is
rather time dependent since the traffic condition varies over time.
It is likely that a fast route at office time becomes extraordinarily
crowded during rush hours. A possible solution is to incorporate
time-related heuristics to improve the search algorithms. However,
it will be very difficult to characterize the complex temporal factors
using simple heuristics. Without effectively modeling dynamic
traffic condition, it would be difficult to accurately estimate the
future cost function h(·). Besides, the setting of д(·) also relies on
the estimation of Time(li → li+1 |ti ,q), which also requires tomodel
dynamic traffic condition on a road segment. Another issue is that
traditional A∗ algorithm is generally difficult to be extended. It is
not clear how to effectively integrate modules for modeling time-
varying traffic condition.

With these considerations, for the PRR task, we seek a more
powerful approach to setting д(·) and h(·) functions, i.e., using deep
learning. We aim to provide more effective solutions to fastest
route recommendation by modeling complex time-varying traffic
condition.

5 OUR MODEL
In the section, we present the Neuralized A-Star based Fastest

route recommendation model, denoted by NASF.

5.1 Model Overview
Our model is developed based on the generalA∗ algorithm frame-

work. For node evaluation, we decompose the entire cost function
f (·) into two parts, namely observable cost and estimated cost, which
correspond to the cost functions д(·) and h(·). Traditionally, both
д(·) and h(·) are heuristically computed or set. While, our idea is to
automatically set the two functions with neural networks instead
of using heuristics. Specially, we develop a core component that is
able to predict time-varying road speed for each road segment in
the road network at varying time. With the speed predictor, we can
set the д(·) function in Eq. 2 by adding one-step forward time cost
with previous time cost. To seth(·) function, we first generate top-K
shortest paths in spatial distance, and develop a bi-directional GRU
network for estimating the future cost. Once the two networks are
learned, we can compute the cost of a candidate location for path
extension. We present the overall architecture for the proposed
model in Fig. 1.

5.2 Predicting Time-Varying Traffic Speed for
Road Segments

To find the fastest route, it is essential to effectively estimate the
traffic speed at varying time for each road segment.

5.2.1 Formalization. Here, we aim to predict the traffic speed
through a road segment e = ⟨li , lj ⟩ at departure time t . As de-
fined in Section 3, the traffic speed of a road segment can be formed
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Figure 1: The overall architecture of the our model. д(·)
learns the cost from the source to a candidate location, called
observable cost; h(·) predicts the estimated cost from a candi-
date location to the destination, called estimated cost.

as time series {ve,t }mt ′=1 at discrete time steps. To estimate ve,t , we
assume the historical speed data (before time t ) of all the road seg-
ments is available. It is challenging to predict time-varying traffic
speed since the dynamics of a traffic system are rather complex.
Many factors can potentially influence the final prediction per-
formance, which cannot be effectively addressed by using simple
statistical methods [9, 27–29]. Here, we identify three key elements
to build our predictive model, namely short-term trend, long-term
temporal patterns and spatial influence. Next, we discuss the speed
estimation for an individual road segment. The estimation process
can be repeated on all the road segments in parallel.

5.2.2 Modeling Short-term Trend with Recurrent Neural Networks.
Given current time step t , we consider a backtracking period of
tS time steps in a short period, i.e., from t − tS to t − 1. To model
the short-term trend, we employ the GRU network to encode a
subsequence of recent speed values (the data from the latest hour in
our work). At time t , we update the hidden state of a road segment
e via the GRU network as

het = GRU(ve,t ,het−1), (3)

wherehet ∈ R
KR is the hidden vector produced by the GRU network

andve,t is the speed of road segment e at time step t . The vector het
encodes the short-term trend of speed varying for road segment e .
Subsequently, we will use the hidden vector het as part of the state
representation of a road segment at time step t .

5.2.3 Modeling Long-term Temporal Patterns with Dilated Causal
Convolutional Neural Networks. In addition to recent trend, it is also
important to consider long-term temporal patterns. For example,
the road speed may show a significant drop at rush hours, and the
traffic flows more smoothly on weekdays. To identify such patterns,
we need to develop a model that is able to capture temporal locality
from a long-term data history. Here, we propose to use a convolu-
tion based neural network for learning such patterns. To ensure no

leakage from the future into the past, we first apply causal convo-
lution [1] to model historical traffic speed data. A disadvantage of
simple causal convolution is that it requires a very deep architec-
ture or very large filters to capture long-term information. Hence,
we further apply the dilated convolution operation F [25] on the
time series of {ve,1, · · · ,ve,n } of a road segment e:

F({ve,1, · · · , ve,n }) =
k−1∑
i=0

filter(i) · ve,n−d ·i , (4)

where d is the dilation factor, k is the filter size, and n−d ·i accounts
for the direction of the past. According to [25], dilation is equivalent
to introducing a fixed step between every two adjacent filter taps.
When d = 1, a dilated convolution reduces to a regular convolution.
Using larger dilation enables an output at the top level to represent a
wider range of inputs, thus effectively expands the receptive field of
traditional convolutional networks. Finally, we utilize a ReLU unit
to generate the long-term representation from the CNN component
for road segment e

c et = ReLU(F({ve,1, · · · , ve,n }). (5)

After we have learned the short-term representation het (Eq. 3)
and long-term representation cet (Eq. 4) , we concatenate the two
representations as the representation of a road segment. Such a rep-
resentation encodes necessary information that reflects the traffic
characteristics of this road segment at time t , namely [het ,c

e
t ].

5.2.4 Modeling the Spatial Influence with Direction-Sensitive Graph
Attention Network. Intuitively, the road segments connected in road
networks should be highly correlated in terms of traffic speed. For
example, if the downstream road segment is in congestion, the
traffic speed of current road segment would slow down. To capture
the spatial influence, we utilize the recently proposed Graph ATten-
tion network (GAT) [20] to characterize the influence of locations
through the road network. Here, note that we treat road segments
as graph nodes, and the junction between two road segments as the
edge. The major reason is that we need to model the correlation of
traffic speed among different road segments. Formally, the update
of GAT can be given as

N (z+1) = GAT
(
N (z) |t

)
, (6)

where N (z) ∈ RKG×|E | denotes the matrix consisting of node rep-
resentations at the z-th iteration, and the ek -th column nek ∈ R

KG

corresponds to the representation of node ek , i.e., road segment
ek ∈ E. Here, our GAT model aims to learn the dynamic represen-
tation of a road segment at time t . Note that z does not indicate
the time step but the iteration number for a specific time t . For
initialization, we set

n(0)ek = [h
ek
t , c

ek
t ], (7)

where we concatenate the learned representations at time t in Eq. 3
and Eq. 4. A key point in GAT is the setting of the attention weights
between two nodes. In the road network, the edge direction is
very important to consider, since the spatial influence between
road segments is usually asymmetric. Hence, we set two kinds of
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attention weights between two road segments lj and lj′ as

αej′→ej =
exp

(
w⊤2 ·

(
W3nej +W4nej′

))
∑
k ∈Iej

exp
(
w⊤2 ·

(
W3nej +W4nek

)) , (8)

βej→ej′ =
exp

(
w⊤2 ·

(
W3nej +W4nej′

))
∑
k ∈Oej

exp
(
w⊤2 ·

(
W3nej +W4nek

)) , (9)

where Iej and Oej are the upstream and downstream road seg-
ments of ej ,W(·) andw2 are learnable parameters, and αej′→ej and
βej→ej′ are the attention weights from upstream and downstream
nodes respectively. The major difference between the attention
weights α and β lies in the normalization factor. We call such a
model as Direction-Sensitive Graph ATtention network (DS-GAT).
In trajectory datasets, it is easy to obtain or infer the direction of
a road segment according to the traffic flow. If a road segment is
bi-directional, we would equally add two uni-directional edges. For
each uni-directional edge, we use αej′→ej or βej→ej′ according to
the edge direction. To capture the complex spatial influence, we
use the multi-head attention for enhancing the representations. We
combine the results of A attention heads as

n(z+1)ei =

A
a=1

relu ©«
∑

ej ∈Iei

α (a)ej→eiW
(a)n(z)ej +

∑
ej ∈Oei

β (a)ei→ejW
(a)n(z)ej

ª®¬ ,
(10)

where α (a)i, j are the normalized attention scores computed by the
a-th attention head, “∥" denotes the concatenation operation and
W (a) is transformation weight matrix for the input. After nei has
been learned, we utilize a MLP-based predictor function to estimate
the traffic speed of road segment e at time t

v̂e,t = MLP(ne ). (11)

As shown in Eq. 7, the learned node representation actually encodes
the temporal information from the corresponding time. Note that
we have omitted the time index t from ne for simplicity. To train
the model, we can compute the mean squared error loss

L1 =
∑
⟨e,t ⟩∈D

(ve,t − v̂e,t )
2, (12)

where v̂e,t is the predicted road speed via Eq. 11.

5.2.5 Setting the д(·) Function. Given a road segment, once the
traffic speed has been predicted, we can divide the road length
by the predicted traffic speed as the travel time through the road
segment as follows:

Time(li →e lj |t ) =
length(e)
v̂e,t

. (13)

In this way, given current location li , we can derive the value of д(·)
in Eq. 14 by adding one-step forward time cost for the candidate
location li+1:

д (ls → li+1) = Cls→li + Time(li → li+1 |ti ,q). (14)

5.3 Estimating the Fastest Arrival Time based
on Top-K Shortest Routes

Compared with д(·), it is more difficult to set h(·), since it needs
to estimate the future travel time (or the arrival time) from current

location. Our idea is although the fastest path is not among top-K
shortest routes, the traffic information of top K shortest routes
provides important evidence for estimating the fastest arrival time.

5.3.1 Generation of Top-K Shortest Paths. Given a candidate lo-
cation, we can efficiently generate the top-K shortest routes from
it to the destination. Following method proposed in [3], we can
use a time of O(O(K · |L| · (|E | + |L| log |L|))) to fulfill this step,
where |L| and |E | are the number of locations and road segments
in a road network, respectively. Here, we consider a route as a se-
quence of consecutive road segments. Let e1 → e2 · · · → en denote
the generated path consisting of n road segments. In this way, we
can better utilize the learned traffic state information through a
sequence of road segments.

5.3.2 Estimation of the Fastest Arrival Time. Here, our task is to
estimate the fastest arrival time from a candidate location at a depar-
ture time. We predict such a time based the K shortest routes from
it to the destination. After generating K shortest routes, we build
an arrival time predictor on top of bi-directional GRU (BiGRU) [18].
First, we construct the representation of each road segment ei by
concatenating two vectors [xei ;nei ], where xei encodes the at-
tribute information of a road segment (including length, width and
category) with a lookup layer, and nei is the learned node represen-
tation using the GAT in Eq. 10. We employ BiGRU to capture both
forward and backward temporal dependencies in a route. At each
time step, we take as input the vector [xei ;nei ], and update the
corresponding state representation. Via the BiGRU, we can obtain
the state representations of each road segment from a route in both
forward and backward directions. We sum the two representations
as the final representation of a road segment, i.e., sej =

−→sej +
←−sej .

We concatenate the representations of the first segment and the
last segment as the representation of the k-th path, denoted by
zk ∈ RKS . We pass the path representation into a MLP component.
Since there are K paths, we choose the minimum one of the K
values:

ĥ (li+1 → ld ) = MinimumK
k=1

(
MLP(z(k ))

)
. (15)

Based on this equation, we further define the loss for the h(·) func-
tion:

L2 =
∑
li ,t

(hli ,t − ĥli ,t )
2. (16)

where ĥli ,t is the predicted value in Eq. 15, hli ,t is the actual travel
time t denotes the departure time from li .

5.3.3 Admissibility Analysis. In heuristic search [7], a heuristic
function is said to be admissible if it never overestimates the cost of
reaching the goal, i.e., the cost it estimates to reach the goal is not
higher than the lowest possible cost from the current point in the
path. If an admissible heuristic is adapted in an algorithm, then this
algorithm would eventually find an optimal solution to the goal. In
mathematics, it is difficult to directly verify the admissibility of our
learned heuristics. Here, we present a simplified admissibility anal-
ysis under some reasonable assumptions. Formally, the probability
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that our model has found the optimal path can be defined as:

p∗ =

ld∏
li=ls

Pru (ĥ (li → ld )), (17)

=

ld∏
li=ls

©«1 −
K∏
j=0

Pro
(
ĥ(l

j
i → l

j
d )
)ª®¬, (18)

where Pru (ĥ (li → ld )) and Pro (ĥ (li → ld )) are the probabilities
that underestimates or overestimates the cost of a path li → ld ,
respectively. We further assume Pro (ĥ (li → ld )) = po for all the
locations in all the routes. In this case, we derive an estimate of K :

K ≈ logpo
(
1 − L

√
p∗
)
, (19)

where L is the length of the optimal path from ls to ld . This equation
gives a rough estimation about the required number of shortest
paths. Consider a running example for admissibility analysis. If we
would like to be guaranteed by a large probability for p∗, say 0.9,
with po = 0.5, K ≈ 6 for an optimal path of length 10. In other
words, we can achieve a probability of 0.9 to find the optimal route
with six shortest paths. With suitable K , we can highly guarantee
the the probability that finds the optimal path.

5.4 The Fastest Route Recommendation
Algorithm

When the model parameters have been learned, we can apply
the proposed model to generate fastest routes in response to users’
queries. We follow the standard search procedure of A∗ algorithms
and perform the repeated selection of nodes with minimum cost to
expand.

Algorithm Procedure. In implementation, we use priority queue
as the fundamental data structure. Specially, we maintain two sets,
called closed set (C) and open set (O). At each step, a node l∗ with
the minimum cost is excluded from the open set for expansion, and
added into the closed set. Given a candidate location, we utilize
Eq. 14 to compute the value for д(·) function, and utilize Eq. 15 to
compute the value for h(·) function. Finally, the two cost values are
summed as the final evaluation cost of a candidate location. We
update the observable cost (G[l ′]) for each neighbor l ′ of l∗ based
on the RNN component. The entire cost (F [l ′]) is also updated
by obtaining new estimated cost using the value network. The
algorithm continues until a goal node has a lower f value than any
node in the queue.

Model Analysis. We focus on a key problem for the PRR task, i.e.,
the estimation of travel time. For estimating travel time, we identify
a fundamental function that is required to be implemented, i.e., the
prediction of road speed. As shown in Fig. 1, we first design a speed
predictor that is able to characterize short-term trend, long-term
temporal patterns and spatial influence, and then develop a module
to estimate the travel time between two locations in a road network
conditioned on the speed predictor. Based on the two components,
д(·) and h(·) are set to compute the observable cost and estimate the
future cost respectively. In this way, the proposed model naturally
combine the merits of traditional heuristic search algorithms and
deep learning. Our model empowers traditional heuristic search

Algorithm 1 The search algorithm for our model.
1: procedure FastestRouteSearch(ls , ld , b)
2: Initialize C, O, F , G
3: while O is not empty do
4: Obtain location l ∗ ← O.pop() ▷ location with the lowest F[]
5: if l ∗ = ld then
6: return the derived route from ls to ld
7: end if
8: O.remove(l ∗)
9: C.add(l ∗)
10: for neighbor l ′ ∈ Ll∗ do
11: if l

′
∈ C then

12: continue
13: end if
14: G

′
← G[lc ] + д(ls → l

′
) ▷ Computed by Eq. (14)

15: if l
′
< O then

16: O .add(l ′ )
17: else if G

′
≥ G[l

′
] then

18: continue
19: end if
20: G[l

′
] ← G

′

21: F [l
′
] ← G[l

′
] + h(l

′
→ ld ) ▷ Computed by Eq. (15)

22: end for
23: end while
24: end procedure

algorithms with the capacities of modeling complex data patterns.
For fastest route recommendation, online time complexity is im-
portant to consider. Compared with traditional A∗, the additional
cost to evaluate a node includes the cost to identify the top-K short-
est paths and the cost to make the computation based on neural
networks. Although we can use accelerated shortest path finding
algorithm, it still time-consuming. Our idea is that although the
overall road network is highly connected, the reachable locations
from a destination location are highly limited within a small step
number (e.g., 3 or 5 steps). We can offline compute all the top K
shortest paths between any two reachable locations. Besides, we
can also consider applying Monte Carlo sampling methods to gen-
erate K high-quality paths, which are approximately shortest paths.
Once the model parameters have been learned, the computation
cost of neural networks can be highly paralleled, which will be
limited to a small time cost.

Parameter Learning. To learn the model parameters, we first
need to train the model parameters with the L1 loss in order to
learn the speed predictor. Then, we learn the model parameters via
optimizing the L2 loss. The parameters in GRU, CNN, GAT and
MLP are initialized by a truncated normal distribution with zero
mean and 0.01 variance, and the biases are initialized as zeros. We
use the Adaptive Moment Estimation (Adam) optimizer to train
with a learning rate of 0.001. The batch size is set as 100 for the
pre-training of д(·), and is set as 50 for the joint training of д(·) and
h(·). The epoch number for the the pre-training is set as 50 and
for the joint training is set as 20 until convergence. The number of
shortest paths k is set as 6.
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Table 1: Statistics of the three datasets after preprocessing.

Statistics Beijing taxi Q traffic PEMSD7
Duration 1 month 2 months 1 month
∆interval 1 minute 15 minute 5 minute
#records 569,678,400 11,139,840 22,101,120

#road segments 13,187 1,934 2,558
#locations 8,592 1,285 1,749
#querys 48,000 48,000 48,000

6 EXPERIMENTS
In this section, we first set up the experiments, and then present

the performance comparison and analysis.

6.1 Experimental Setup
6.1.1 Construction of the Datasets. To measure the performance
of the proposed model, we adopted three real-world traffic speed
datasets in our experiment. Details of the three datasets are listed
in Table 1.

The first traffic speed dataset was generated by GPS trajectories
of 50,000 taxis in Beijing. We name this dataset as BT-Traffic (Bejing
Taxi Traffic Speed). The taxi trajectories used in BT-Traffic were
collected during April 1 to April 30, 2015.We use the openstreetmap1

to acquire the road network of Beijing and match the trajectories on
the road network using the open source tool Fast Map Matching 2.
The traffic speed of a road segment is set as the average speed of
taxies that move past the segment during a sampling period. For
the BT-Traffic dataset, the sampling period is set as every minute.

The second dataset is Q-traffic, which is a public traffic speed
dataset released by the Baidu Map [12]. The Q-traffic dataset con-
tains traffic speed of road segments in Beijing, China during April 1,
2017 to May 31, 2017. The dataset is sampled by every 15 minutes.

The third dataset is PeMSD7, which was collected by the Caltrans
Performance Measurement System (PeMS) through over 39,000
sensors that are deployed across the major metropolitan areas of
California state highway system 3. The data of 2558 stations in the
District 7 of California are used in our experiment. The time range
is from May 1 to May 31, 2012. It is sampled by every 30 minutes.

6.1.2 Evaluation Metrics. For the FRR task, we adopt two Fast Rate
metrics to evaluate the performance of our model:

FR1 =
#(A’s real travel time < the shortest travel time)

#queries
,

FR2 =
A’s real travel time − the shortest travel time

best travel time
.

Here, the shortest travel time is acquired using the algorithm pro-
posed in [4], which uses the A* algorithm to find the fastest path
with future traffic speed data available.

6.1.3 Task Setting. For each dataset, we keep the data in the first
70% days as a training set, and the data in the next 10% days as a
validation set. The loss functions L1 and L2 in Eq. (12) and Eq. (16)
are trained and optimized with the training and validation sets. The

1https://www.openstreetmap.org
2https://www.github.com/cyang-kth/fmm
3http://pems.dot.ca.gov/

performance of FRR algorithms with optimized h(·) and д(·) func-
tions was tested using the data in the rest 20% days. Over the test
dataset, we generate three types of queries w.r.t. distances between
source and destination, namely short queries, medium queries, and
long queries. We set short queries as < 5 km, medium queries as
5 − 10 km, long queries as > 10 km for the Beijing taxi dataset, set
short as 4 − 5 km, medium as 5 − 6 km, and long as > 6 km for the
Q-traffic dataset, and set short as < 20 km, medium as 20 − 50 km,
and long as > 50 km for the PeMSD7 dataset. For queries in each
type, we vary their departure time as each hour of one day. The
average performance of each type of queries are reported.

6.1.4 Methods to Compare. We consider the following methods as
baselines to compare:

•STATIC: The baseline finds shortest path based on traffic speeds
of all roads at the departure time of a query. It equals to find the
shortest path on a static travel time graph at a departure time.

•T-drive [29]: This baseline mines smart driving behaviors from
the historical GPS trajectories of a large number of taxi drivers,
and provides users with the practically fastest route to a given
destination at a given departure time.

•IAFP [9]: This baseline adopts a novel extension of the A* algo-
rithm to find a time-dependent fastest route with historical traffic
speed data of road networks.

•ARIMA: In this baseline, we use the AutoRegressive Integrated
Moving Average model [2] to predict traffic speed ve,t in the func-
tion д(·), and set h(·) = 0 for the algorithm 1.

•SVR: In this baseline, we use the Support Vector Regression
model [23] to predict traffic speed ve,t in the function д(·), and set
h(·) = 0 for the algorithm 1.

•STGCN : In this baseline, we use a novel deep learning frame-
work, Spatio-Temporal GraphConvolutional Networks (STGCN) [24],
to predict traffic speed ve,t in the function д(·), and set h(·) = 0 for
the algorithm 1.

Among these baselines, STATIC only uses the current (departure
time) traffic speed to plan a route. T-drive and IAFP are historical
traffic information based methods, which use experiential traffic
speed to plan a route. ARIMA, SVR and GRU are baselines that have
proactive ability to predict traffic speed and plan a route.

6.2 Results and Analysis

We present the results of all the comparison methods in Table 2.
First, from the table we can that see the NASF model is consistently
better than all the baselines in all cases. This result verified the per-
formance advantage of the proposed fastest route recommendation
algorithm.

Second, for the lack of real time traffic information, historical
data based methods, i.e., IAFP and T-drive, perform not very well.
Compared with IAFP, the performance of T-drive is better. The
reason might be T-drive has an ability to estimate the distribution
of travel time for each road segment while IAFP can only estimate
traffic speeds of segments as discrete levels. Intuitively, modeling
the travel time distribution should be more effective compared with
only constructing coarse-grained speed levels.

Third, the STATIC method sometimes is better than IAFP and
T-drive, especially for the short and medium distance queries. A
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Table 2: Performance comparison using two metrics on three datasets. With paired t-test, the improvement of the our model
over all the baselines is significant at the level of 0.01.

Datasets Metric BT-Traffic PeMSD7 Q-traffic
Length short medium long short medium long short medium long
T-Drive 0.499 0.513 0.548 0.316 0.319 0.324 0.352 0.366 0.371
IAFP 0.512 0.535 0.582 0.322 0.326 0.330 0.377 0.383 0.391

STATIC 0.388 0.533 0.612 0.236 0.247 0.260 0.311 0.374 0.433
ARIMA 0.364 0.437 0.494 0.228 0.239 0.253 0.295 0.353 0.421

FR1 SVR 0.318 0.402 0.458 0.213 0.225 0.241 0.283 0.331 0.403
STGCN 0.264 0.310 0.395 0.202 0.217 0.229 0.258 0.301 0.387
NASF 0.251 0.293 0.358 0.189 0.201 0.215 0.216 0.257 0.305
T-Drive 0.112 0.147 0.214 0.094 0.098 0.102 0.119 0.122 0.127
IAFP 0.132 0.167 0.234 0.108 0.111 0.115 0.128 0.131 0.136

STATIC 0.082 0.141 0.231 0.053 0.062 0.073 0.072 0.104 0.133
ARIMA 0.076 0.133 0.220 0.048 0.057 0.063 0.067 0.088 0.118

FR2 SVR 0.071 0.125 0.199 0.044 0.050 0.057 0.065 0.082 0.115
STGCN 0.061 0.118 0.211 0.041 0.051 0.056 0.062 0.078 0.108
NASF 0.040 0.103 0.166 0.030 0.041 0.047 0.037 0.047 0.081

possible reason is that traffic conditions might not change very
significantly for short distance trips, so in this condition, the cur-
rent traffic speed is more close to actual traffic speed compared
with historical traffic speeds. Therefore, STATIC using current traf-
fic speed to plan routes may have better performance than IAFP
and T-drive. However, the experiment results also show that, for
long distance trips, where traffic conditions might change very
significantly, using historical traffic speed is very necessary.

Lastly, the prediction based baselines, i.e., ARIMA, SVR and
STGCN, have good performance compared with STATIC and his-
torical data based baselines. This result indicates the proactive
ability is very important for the FRR problem. Comparing the
three prediction based baselines, we can see the performance is
STGCN > SVR > ARIMA. As shown in Section 6.3.2, the traffic
speed prediction performance of the three baselines is in the same
order, indicating that a better traffic speed prediction performance
is very helpful for efficient fastest route planning.

By summarizing these results, we can see the models with traffic
speed prediction abilities are competitive to solve the FRR task,
especially when a good traffic speed prediction model is adopted.
Our model combines both heuristic search and neural networks to
solve the FRR problem, and the proposed traffic speed prediction
model can fully exploit the information in long/short-term historical
data and road network structure information, so it performs the
best among the comparison methods.

6.3 Detailed Analysis on our Model
In this section, we perform a series of detailed analysis on our

model for further verifying its effectiveness. Due to space limit, we
only report the results on the BT-traffic dataset. The rest results
show the similar findings, and are omitted here.
6.3.1 Effect of Model Modules in FRR.

We first examine the effect of different modules to FRR per-
formance. Here, we consider four cropped versions of our model:
(1) DC, which is our model without graph attention network and
GRU for short-term trend modeling, i.e., only the Dilated Causal

Table 3: FR1 Comparison among Model Modules

Query Short Medium Long
DC 0.322 0.365 0.484
GRU 0.295 0.339 0.423
¬GAT 0.268 0.314 0.401
¬DS 0.257 0.301 0.387
NASF 0.251 0.293 0.358

CNN module. (2) GRU, which is our model without graph atten-
tion network and dilated convolution modules, i.e., only the GRU
module. (3) ¬GAT, which is our model without the graph attention
network module. (4) ¬DS, which is our model without direction
sensitivity module. The whole model is denoted as NASF. The FR1
performance of the four variants are listed in Table 3. From the
table we can see that the performance rank follows DC < GRU <
¬GAT < ¬DS < NASF. The performance of GRU is better than DC ,
which indicates the short-term trend information is more important
than the long-term trend information. The model performances
are improved by graph attention network and direction sensitivity
modules, which verified the effectiveness of the two modules.

Table 4: Effectiness of Traffic Speed Prediction Modules

Interval 5 min 15 min 30 min 60 min
ARIMA 7.31 9.14 10.45 12.13
SVR 6.29 8.28 9.14 10.57
¬GAT 4.20 5.36 5.93 6.98
STGCN 4.13 5.21 5.87 6.69
¬DS 4.06 5.18 5.71 6.57
NASF 4.02 4.97 5.59 6.37

6.3.2 Analysis of Model Traffic Prediction Performance. As we dis-
cussed in Section 6.2, the performance of traffic speed prediction is
especially important for our model. Here, we examine the predic-
tion performance of the traffic speed prediction modules, i.e., the
GRU, DC, GAT, and DS modules. In the experiment, we prepare
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three cropped versions of our model: (1) ¬GAT using our traffic
speed prediction model without the GAT and DS modules. (2) ¬DS
using our traffic speed prediction model without the DS module,
i.e., considering road network as undirected graph. (3) NASF using
all modules. Moreover, three traffic prediction models are used as
baselines: (1) ARIMA using ARIMA model to predict future speed.
(2) SVR using support vector regression to predict future speed. (3)
STGCN using spatio-temporal graph convolution neural network.

Following [24], we use the MAP (Mean Average Precision) of
all road segments for all time periods as metric to evaluate speed
prediction performance of our model. The speed unit is km/hour . In
Table 4, it can be observed that the performance rank is as follows:
ARIMA < SVR < ¬GAT < STGCN < ¬DS < NASF. Although the
¬GAT does not use any road network structure and neighbor seg-
ment traffic information, its performance is very close to the STGCN
where the road network information is involved. Both ¬DS and
NASF exploit the traffic speed information of neighbor segments,
and then they achieved the improved performance compared with
STGCN. Moreover, the performance of NASF is better than ¬DS,
indicating that the direction information in road network is useful
for traffic speed prediction.

Table 5: Admissibility of NASF.

Query 1km 3km 5km 10km 15km
AEE -0.531 -0.931 -1.531 -3.016 -5.51
OE 6.72% 6.33% 5.82% 5.57% 5.31%
OP 89.79% 77.68% 71.82% 66.54% 62.39%

6.3.3 Analysis of Admissibility. Admissibility is a key factor in the
design of heuristic. If heuristic is admissible, it will make sure the A*
algorithm to find the optimal path. As detailed in [7], if the heuristic
function is admissible, it never overestimates the actual cost to get to
the goal. Here, we use three metrics to evaluate admissibility of our
model. (1) AEE: Average Estimation Error for all future travel time
estimations. (2) OE: the percentage of estimations that overestimate
the fastest arrival time. (3) OP : percentage of queries that can find
the optimal path. In the experiments, the query distance is varied
from 1km to 15km. The experiment results are listed in Table 5.
It can be observed that AEEs of our model for all conditions are
negative, which indicates the heuristic of our model is “on average”
admissible. The OE for all estimations are less than 7%, which
indicates that for most of cases our model is admissible. From the
OP performance we can see that our model can find the optimal
path most of the time.

Table 6: Search Space of Heuristics Networks (# Expanded
Roads)

Query 1km 3km 5km 10km 15km
ED 31.8 94.3 254.2 1066.5 1555.4
¬DC 18.9 53.7 161.3 619.8 855.1
¬GRU 17.7 49.3 151.1 605.3 825.6
NASF 13.5 41.2 125.5 519.5 716.0

(a) At the Departure Time

Start

End

Start

End

(b) After 15 Minutes

Congestion Occurred

NASF
T-drive

22 min 

13 min 

0 km/h

100km/h

0 km/h

100km/h

Figure 2: Visualization of traffic speed information in road
networks. A darker color indicates a lower traffic speed.

6.3.4 Analysis of Search Space. Another important metric to eval-
uate the heuristic function of a search algorithm is the size of search
space. Reduced search space can result in a faster inference speed.
In this part, we prepare four model variants for the search space
comparisons, including (1) ED using Euclid distance as heuristics,
(2) ¬DC using our heuristic network without the dilated causal con-
volution module, (3) ¬GRU using our heuristic network without
the GRU module, (4) NASF using our whole model. The average
expanded road number of these methods for varied query distances
are listed in Table 6. It can be observed that the performance rank
is as follows: ED < ¬DC < ¬GRU < NASF. We can see that the
simplest spatial distance baseline ED gives the worst performance,
which indicates simple heuristics does not work well in our task.
¬DC < ¬GRU < NASF indicates that both long-term and short-term
traffic trends can help our model to reduce search space.

6.4 Qualitative Analysis
Previously, we have shown the effectiveness of our model in

the FRR task. In this part, we qualitatively analyze why our NASF
model is able to yield a good performance by some show cases.

In our model, the traffic prediction module is a core module for
FRR. Figure 2 is a show case to demonstrate how the traffic speed
prediction helps our model to generate a faster route recommenda-
tion than other methods. In the show case, a FRR algorithm tries
to give a route recommendation from the start point to the end
point. As shown in Fig. 2(a), the route recommended by the T-drive
algorithm is along the gray lines on left lower part of the map,
which is the shortest path from start point to the end point through
expressways. However, our NASF model gives a different recom-
mendation, which is along the blue lines on upper right part of
the map. Although the physical distance of our model’s recommen-
dation is longer than T-drive’s recommendation, the experiment
result shows the actual travel time of our model’s recommendation
(13min) is shorter than T-drive’s recommendation (22min). Fig. 2(b)
is a traffic speed heat map after 15 min. As shown in the figure, traf-
fic congestion happened on the road of T-drive’s recommendation.
The NASF model predicted the congestion in advance and then
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(a) Search space of h(·)=0 (b) Reduced search space by NASF

Start

End End

Start

Area of Fig.(c)

(c) Estimated costs by NASF

h= 24.31

h= 29.43

Figure 3: Visualization of the search procedure with the es-
timated costs by the NASF model.

recommended user to avoid the congestion. That is why our model
achieved an improved fastest rout recommendation performance.

Next, we continue to study how theh(·) function helps the search
procedure in NASF. Figure 3 presents a show case. Here, given the
start and end points, the model tries to find the fastest route. The
red lines on the Fig. 3(a) denote the segments that are searched by
NASF with h(·) = 0, and on Fig. 3(b) denote searched by the whole
model. By comparing the two figures, it can be seen that the h(·)
of our model is able to effectively reduce the search space. When
zooming into a subsequence of this route, we further compare the
estimated h(·) for two candidate road segments (red line) in Fig. 3(c).
It’s obvious that turn left will make user away from the destination.
The figure shows that the h(·) function gives a longer estimated
arrival time, i.e., 29.43 > 24.31, to avoid this pointless search.

7 CONCLUSIONS
In this paper, we took the initiative to adopt neural networks to

automatically learn the cost functions in A∗ for the FRR task. To
improve the FRR task, we focused on the estimation of travel time
by modeling complex traffic information with neural networks. For
this purpose, we developed an estimation module for the travel
time conditioned on a well-designed speed predictor for road seg-
ments. We constructed extensive experiments for verifying the
effectiveness and robustness of the proposed model.

Since road network information is not always available, as future
work, we will consider extending our model to solve the FRR task
without road networks. Now, we focus on the FRR task. We will
study whether our solution can be generalized to other search tasks.
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