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ABSTRACT
Recent years have witnessed the unprecedented rising of time series
from almost all kindes of academic and industrial fields. Various
types of deep neural network models have been introduced to time
series analysis, but the important frequency information is yet lack
of effective modeling. In light of this, in this paper we propose a
wavelet-based neural network structure called multilevel Wavelet
Decomposition Network (mWDN) for building frequency-aware
deep learning models for time series analysis. mWDN preserves
the advantage of multilevel discrete wavelet decomposition in fre-
quency learning while enables the fine-tuning of all parameters
under a deep neural network framework. Based on mWDN, we
further propose two deep learning models called Residual Classifi-
cation Flow (RCF) and multi-frequecy Long Short-Term Memory
(mLSTM) for time series classification and forecasting, respectively.
The two models take all or partial mWDN decomposed sub-series
in different frequencies as input, and resort to the back propaga-
tion algorithm to learn all the parameters globally, which enables
seamless embedding of wavelet-based frequency analysis into deep
learning frameworks. Extensive experiments on 40 UCR datasets
and a real-world user volume dataset demonstrate the excellent
performance of our time series models based on mWDN. In partic-
ular, we propose an importance analysis method to mWDN based
models, which successfully identifies those time-series elements
and mWDN layers that are crucially important to time series analy-
sis. This indeed indicates the interpretability advantage of mWDN,
and can be viewed as an indepth exploration to interpretable deep
learning.
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1 INTRODUCTION
A time series is a series of data points indexed in time order. Methods
for time series analysis could be classified into two types: time-
domain methods and frequency-domain methods.1 Time-domain
methods consider a time series as a sequence of ordered points
and analyze correlations among them. Frequency-domain methods
use transform algorithms, such as discrete Fourier transform and
Z-transform, to transform a time series into a frequency spectrum,
which could be used as features to analyze the original series.

In recent years, with the booming of deep learning concept, var-
ious types of deep neural network models have been introduced to
time series analysis and achieved state-of-the-art performances in
many real-life applications [28, 38]. Some well-known models in-
clude Recurrent Neural Networks (RNN) [40] and Long Short-Term
Memory (LSTM) [14] that use memory nodes to model correlations
of series points, and Convolutional Neural Network (CNN) that uses
trainable convolution kernels to model local shape patterns [42].
Most of these models fall into the category of time-domain methods
without leveraging frequency information of a time series, although
some begin to consider in indirect ways [6, 19].

Wavelet decompositions [7] are well-known methods for cap-
turing features of time series both in time and frequency domains.
Intuitively, we can employ them as feature engineering tools for
data preprocessing before a deep modeling. While this loose cou-
pling way might improve the performance of raw neural network
models [24], they are not globally optimized with independent
parameter inference processes. How to integrate wavelet trans-
forms into the framework of deep learning models remains a great
challenge.

In this paper, we propose a wavelet-based neural network struc-
ture, named multilevel Wavelet Decomposition Network (mWDN), to
build frequency-aware deep learningmodels for time series analysis.

1https://en.wikipedia.org/wiki/Time_series
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Similar to the standard Multilevel Discrete Wavelet Decomposition
(MDWD) model [26], mWDN can decompose a time series into
a group of sub-series with frequencies ranked from high to low,
which is crucial for capturing frequency factors for deep learning.
Different from MDWD with fixed parameters, however, all parame-
ters in mWDN can be fine-turned to fit training data of different
learning tasks. In other words, mWDN can take advantages of both
wavelet based time series decomposition and the learning ability
of deep neural networks.

Based on mWDN, two deep learning models, i.e., Residual Classi-
fication Flow (RCF) and multi-frequency Long Short-Term Memory
(mLSTM), are designed for time series classification (TSC) and fore-
casting (TSF), respectively. The key issue in TSC is to extract as
many as possible representative features from time series. The RCF
model therefore adopts the mWDN decomposed results in different
levels as inputs, and employs a pipelined classifier stack to exploit
features hidden in sub-series through residual learning methods.
For the TSF problem, the key issue turns to inferring future states
of a time series according to the hidden trends in different frequen-
cies. Therefore, the mLSTM model feeds all mWDN decomposed
sub-series in high frequencies into independent LSTM models, and
ensembles all LSTM outputs for final forecasting. Note that all pa-
rameters of RCF and mLSTM including the ones in mWDN are
trained using the back propagation algorithm in an end-to-endman-
ner. In this way, the wavelet-based frequency analysis is seamlessly
embedded into deep learning frameworks.

We evaluate RCF on 40 UCR time series datasets for TSC, and mL-
STM on a real-world user-volume time series dataset for TSF. The
results demonstrate their superiorities to state-of-the-art baselines
and the advantages of mWDN with trainable parameters. As a nice
try for interpretable deep learning, we further propose an impor-
tance analysis method to mWDN based models, which successfully
identifies those time-series elements and mWDN layers that are
crucially important to the success of time series analysis. This in-
dicates the interpretability advantage of mWDN by integrating
wavelet decomposition for frequency factors.

2 MODEL
Throughout the paper, we use lowercase symbols such as a, b to
denote scalars, bold lowercase symbols such as a, b to denote vec-
tors, bold uppercase symbols such as A,B to denote matrices, and
uppercase symbols such as A,B, to denote constant.

2.1 Multilevel Discrete Wavelet Decomposition
Multilevel Discrete Wavelet Decomposition (MDWD) [26] is a
wavelet based discrete signal analysis method, which can extract
multilevel time-frequency features from a time series by decom-
posing the series as low and high frequency sub-series level by
level.

We denote the input time series as x = {x1, . . . , xt , . . . ,xT }, and
the low and high sub-series generated in the i-th level as xl (i ) and
xh (i ). In the (i + 1)-th level, MDWD uses a low pass filter l = {l1,
. . . , lk , . . . , lK } and a high pass filter h = {h1, . . . ,hk , . . . ,hK },
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Figure 1: The mWDN framework.

K ≪ T , to convolute low frequency sub-series of the upper level as

aln (i + 1) =
K∑
k=1

x ln+k−1 (i ) · lk ,

ahn (i + 1) =
K∑
k=1

x ln+k−1 (i ) · hk ,

(1)

where x ln (i ) is the n-th element of the low frequency sub-series in
the i-th level, and xl (0) is set as the input series. The low and high
frequency sub-series xl (i ) and xh (i ) in the level i are generated
from the 1/2 down-sampling of the intermediate variable sequences
al (i ) =

{
al1 (i ),a

l
2 (i ), . . .

}
and ah (i ) =

{
ah1 (i ),a

h
2 (i ), . . .

}
.

The sub-series set X (i ) =
{
xh (1), xh (2), . . . , xh (i ), xl (i )

}
is

called as the i-th level decomposed results of x. Specifically, X (i )
satisfies: 1) We can fully reconstruct x from X (i ); 2) The frequency
from xh (1) to xl (i ) is from high to low; 3) For different layers, X (i )
has different time and frequency resolutions. As i increases, the fre-
quency resolution is increasing and the time resolution, especially
for low frequency sub-series, is decreasing.

Because the sub-series with different frequencies in X keep the
same order information with the original series x, MDWD is re-
garded as time-frequency decomposition.

2.2 Multilevel Wavelet Decomposition
Network

In this section, we propose a multilevel Wavelet Decomposition
Network (mWDN), which approximatively implements a MDWD
under a deep neural network framework.
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The structure of mWDN is illustrated in Fig. 1. As shown in the
figures, the mWDN model hierarchically decomposes a time series
using the following two functions

al (i ) = σ
(
Wl (i )xl (i − 1) + bl (i )

)
,

ah (i ) = σ
(
Wh (i )xl (i − 1) + bh (i )

)
,

(2)

where σ (·) is a sigmoid activation function, and bl (i ) and bh (i ) are
trainable bias vectors initialized as close-to-zero random values. We
can see the functions in Eq. (2) have similar forms as the functions
in Eq. (1) for MDWD. xl (i ) and xh (i ) also denote the low and
high frequency sub-series of x generated in the i-th level, which
are down-sampled from the intermediate variables al (i ) and ah (i )
using an average pooling layer as x lj (i ) = (al2j (i ) + a

l
2j−1 (i ))/2.

In order to implement the convolution defined in Eq. (1), we set
the initial values of the weight matrices Wl and Wh as

Wl (i ) =



l1 l2 l3 · · · lK ϵ · · · ϵ
ϵ l1 l2 · · · lK−1 lK · · · ϵ
...
...
...
. . .

...
...

...
...

ϵ ϵ ϵ · · · l1 · · · lK−1 lK
...
...
...
. . .

...
...

...
...

ϵ ϵ ϵ · · · · · · · · · l1 l2
ϵ ϵ ϵ · · · · · · · · · ϵ l1



, (3)

Wh (i ) =



h1 h2 h3 · · · hK ϵ · · · ϵ
ϵ h1 h2 · · · hK−1 hK · · · ϵ
...

...
...
. . .

...
...

...
...

ϵ ϵ ϵ · · · h1 · · · hK−1 hK
...

...
...
. . .

...
...

...
...

ϵ ϵ ϵ · · · · · · · · · h1 h2
ϵ ϵ ϵ · · · · · · · · · ϵ h1



.

(4)
Obviously,Wl (i ) andWh (i ) ∈ RP×P , where P is the size of xl (i −
1). The ϵ in the weight matrices are random values that satisfy
|ϵ | ≪ |l |,∀l ∈ l and |ϵ | ≪ |h |,∀h ∈ h. We use the Daubechies 4
Wavelet [29] in our practice, where the filter coefficients are set as

l ={−0.0106, 0.0329, 0.0308,−0.187,
− 0.028, 0.6309, 0.7148, 0.2304},

h ={−0.2304, 0.7148,−0.6309,−0.028,
0.187, 0.0308,−0.0329,−0.0106}.

From Eq. (2) to Eq. (3), we use the deep neural network frame-
work to implement an approximate MDWD. It is noteworthy that
although the weight matrices Wl (i ) and Wh (i ) are initialized as
the filter coefficients of MDWD, they are still trainable according
to real data distributions.

2.3 Residual Classification Flow
The task of TSC is to predict unknown category label of a time series.
A key issue of TSC is extracting distinguishing features from time
series data. The decomposed results X of mWDN are natural time-
frequency features that could be used in TSC. In this subsection,
we propose a Residual Classification Flow (RCF) network to exploit
the potentials of mWDN in TSC.

The original time series x
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Figure 2: The RCF framework.

The framework of RCF is illustrated in Fig. 2. As shown in the
figure, RCF contains many independent classifiers. The RCF model
connects the sub-series generated by the i-th mWDN level, i.e.,
xh (i ) and xl (i ), with a forward neural network as

u(i ) = ψ
(
xh (i ), xl (i ),θψ

)
, (5)

whereψ (·) could be a multilayer perceptron, a convolutional net-
work, or any other types of neural networks, and θψ represents
the trainable parameters. Moreover, RCF adopts a residual learning
method [13] to join u(i ) of all classifiers as

ĉ(i ) = S (ĉ(i − 1) + u(i )) , (6)

where S (·) is a softmax classifier, ĉi is a predicted value of one-hot
encoding of the category label of the input series.

In the RCF model, the decomposed results of all mWDN levels,
i.e. X (1), . . . ,X (N ), are evolved. Because the decomposed results
in different mWDN levels have different time and frequency resolu-
tions [26], the RCFmodel can fully exploit patterns of the input time
series from different time/frequency-resolutions. In other words,
RCF employs a multi-view learning methodology to achieve high-
performance time series classification.

Moreover, deep residual networks [13] were proposed to solve
the problem that using deeper network structures may result in
a great training difficulty. The RCF model also inherits this merit.
In Eq. (6), the i-th classifier makes decision based on u(i ) and the
decision made by the (i − 1)-th classifier, which can learn from
u(i ) the incremental knowledge that the (i − 1)-th classifier does
not have. Therefore, users could append residual classifiers one
after another until classification performance does not increase any
more.

2.4 Multi-frequency Long Short-Term Memory
In this subsection, we propose a multi-frequency Long-Short Term
Memory (mLSTM) model based on mWDN for TSF. The design of
mLSTM is based on the insight that the temporal correlations of
points hidden in a time series have close relations with frequency.
For example, large time scale correlations, such as long-term ten-
dencies, usually lay in low frequency, and the small time scale
correlations, such as short-term disturbances and events, usually
lay in high frequency. Therefore, we could divide a complicated TSF
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Figure 3: The mLSTM framework.

problem as many sub-problems of forecasting sub-series decom-
posed by mWDN, which are relatively easier because the frequency
components in the sub-series are simpler.

Given a time series with infinite length, on which we open a T
size slide window from the past to the time t as

x = {xt−T+1, . . . ,xt−1,xt } . (7)

Using mWDN to decompose x, we get the low and high frequency
component series in the i-th level as

xl (i ) = {x l
t− T

2n +1
(i ), . . . ,x lt−1 (i ),x

l
t (i )},

xh (i ) = {xh
t− T

2n +1
(i ), . . . ,xht−1 (i ),x

h
t (i )}.

(8)

As shown in Fig. 3, the mLSTM model uses the decomposed re-
sults of the last level, i.e., the sub-series in X (N ) = {xh (1), xh (2),
. . . , xh (N ), xl (N )}, as the inputs of N + 1 independent LSTM sub-
networks. Every LSTM sub-network forecasts the future state of
one sub-series in X (N ). Finally, a fully connected neural network
is employed to fuse the LSTM sub-networks as an ensemble for
forecasting.

3 OPTIMIZATION
In TSC applications, we adopt a deep supervision method to train
the RCF model [37]. Given a set of time series {x1, x2, . . . , xM }, we
use cross-entropy as loss metric and define the objective function
of the i-th classifier as

J̃ c (i ) = −
1
M

M∑
m=1

(
c⊤m ln ĉm (i ) + (1 − cm )⊤ ln(1 − ĉm (i ))

)
, (9)

where cm is the one-hot encoding of xm ’s real category, and ĉm (i )
is the softmax output of the i-th classifier with the input xm . For a
RCF with N classifiers, the final objective function is a weighted
sum of all J̃ (i ) [37]:

J c =

N∑
i=1

i

N
J̃ c (i ). (10)

The result of the last classifier, ĉ(N ), is used as the final classification
result of RCF.

In TSF applications, we adopt a pre-training and fine turning
method to train the mLSTM model. In the pre-training step, we
use MDWD to decompose the real value of the future state to be

predicted as N wavelet components, i.e. yp = {yh (1), yh (2), . . . ,
yh (N ), yl (N )}, and then combine the outputs of all LSTM sub-
network as ŷp , then the objective function of the pre-training step
is defined as

J̃ f = −
1
M

M∑
m=1
∥ym − ŷ

p
m ∥

2
F , (11)

where ∥ · ∥F is the Frobenius Norm. In the fine-turning step, we
use the following objective function to train mLSTM based on the
parameters learned in the pre-training step:

J f =
1
T

T∑
t=1

(ŷ − y)2 , (12)

where ŷ is future state predicted by mLSTM and y is the real value.
We use the error back propagation (BP) algorithm to optimize

the objective functions. Denoting θ as the parameters of the RCF
or mLSTM model, the BP algorithm iteratively updates θ as

θ ← θ − η
∂J (θ )

∂θ
, (13)

where η is an adjustable learning rate. The weight matrices Wh (i )

and Wl (i ) of mWDN are also trainable in Eq. (13). A problem of
training parameters with preset initial values likeWl (i ) andWh (i )
is that the model may “forget” the initial values [9] in the training
process. To deal with this, we introduce two regularization items
to the objective function and therefore have

J ∗ = J (θ ) + α
∑
i
∥Wl (i ) − W̃l (i )∥2F

+β
∑
i
∥Wh (i ) − W̃h (i )∥2F ,

(14)

where W̃l (i ) and W̃h (i ) are the same matrices asWh (i ) andWh (i )
except that ϵ = 0, and α , β are hyper-parameters which are set as
empirical values. Accordingly, the BP algorithm iteratively updates
the weight matrices of mWDN as

Wl (i ) ←Wl (i ) − η

(
∂J

∂Wl (i )
− 2α

(
Wl (i ) − W̃(i )

))
,

Wh (i ) ←Wh (i ) − η

(
∂J

∂Wh (i )
− 2β

(
Wl (i ) − W̃(i )

))
.

(15)

In this way, the weights in mWDN will converge to a point that is
near to the wavelet decomposed prior, unless wavelet decomposi-
tion is far inappropriate to the task.

4 EXPERIMENTS
In this section, we evaluate the performance of the mWDN-based
models in both the TSC and TSF tasks.

4.1 Task I: Time Series Classification
Experimental Setup. The classification performance was tested
on 40 datasets of the UCR time series repository [4], with various
competitors as follows:
• RNN and LSTM. Recurrent Neural Networks [40], and Long
Short-Term Memory [14] are two kinds of classical deep
neural networks widely used in time series analysis.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2440 



Table 1: Comparison of Classification Performance on 40 UCR Time Series Datasets

Err Rate RNN LSTM MLP FCN ResNet MLP-RCF FCN-RCF ResNet-RCF Wavelet-RCF

Adiac 0.233 0.341 0.248 0.143 0.174 0.212 0.155 0.151 0.162
Beef 0.233 0.333 0.167 0.25 0.233 0.06 0.03 0.06 0.06
CBF 0.189 0.118 0.14 0 0.006 0.056 0 0 0.016

ChlorineConcentration 0.135 0.16 0.128 0.157 0.172 0.096 0.068 0.07 0.147
CinCECGtorso 0.333 0.092 0.158 0.187 0.229 0.117 0.014 0.084 0.011

CricketX 0.449 0.382 0.431 0.185 0.179 0.321 0.216 0.297 0.211
CricketY 0.415 0.318 0.405 0.208 0.195 0.254 0.172 0.301 0.192
CricketZ 0.4 0.328 0.408 0.187 0.187 0.313 0.162 0.275 0.162

DiatomSizeReduction 0.056 0.101 0.036 0.07 0.069 0.013 0.023 0.026 0.028
ECGFiveDays 0.088 0.417 0.03 0.015 0.045 0.023 0.01 0.035 0.016

FaceAll 0.247 0.192 0.115 0.071 0.166 0.094 0.098 0.126 0.076
FaceFour 0.102 0.364 0.17 0.068 0.068 0.102 0.05 0.057 0.058
FacesUCR 0.204 0.091 0.185 0.052 0.042 0.15 0.087 0.102 0.087
50words 0.316 0.284 0.288 0.321 0.273 0.316 0.288 0.258 0.3

FISH 0.126 0.103 0.126 0.029 0.011 0.086 0.021 0.034 0.026
GunPoint 0.1 0.147 0.067 0 0.007 0.033 0 0.02 0
Haptics 0.594 0.529 0.539 0.449 0.495 0.480 0.461 0.473 0.476

InlineSkate 0.667 0.638 0.649 0.589 0.635 0.543 0.566 0.578 0.572
ItalyPowerDemand 0.055 0.072 0.034 0.03 0.04 0.031 0.023 0.034 0.028

Lighting2 0 0 0.279 0.197 0.246 0.213 0.145 0.197 0.162
Lighting7 0.288 0.384 0.356 0.137 0.164 0.179 0.091 0.177 0.144
MALLAT 0.119 0.127 0.064 0.02 0.021 0.058 0.044 0.046 0.024

MedicalImages 0.299 0.276 0.271 0.208 0.228 0.251 0.164 0.188 0.206
MoteStrain 0.133 0.167 0.131 0.05 0.105 0.105 0.076 0.032 0.05

NonInvasiveFatalECGThorax1 0.09 0.08 0.058 0.039 0.052 0.029 0.026 0.04 0.042
NonInvasiveFatalECGThorax2 0.069 0.071 0.057 0.045 0.049 0.056 0.028 0.033 0.048

OliveOil 0.233 0.267 0.6 0.167 0.133 0.03 0 0 0.012
OSULeaf 0.463 0.401 0.43 0.012 0.021 0.342 0.018 0.021 0.021

SonyAIBORobotSurface 0.21 0.309 0.273 0.032 0.015 0.193 0.042 0.032 0.052
SonyAIBORobotSurfaceII 0.219 0.187 0.161 0.038 0.038 0.092 0.064 0.083 0.072

StarLightCurves 0.027 0.035 0.043 0.033 0.029 0.021 0.018 0.027 0.03
SwedishLeaf 0.085 0.128 0.107 0.034 0.042 0.089 0.057 0.017 0.046

Symbols 0.179 0.117 0.147 0.038 0.128 0.126 0.04 0.107 0.084
TwoPatterns 0.005 0.001 0.114 0.103 0 0.070 0 0 0.005

uWaveGestureLibraryX 0.224 0.195 0.232 0.246 0.213 0.213 0.218 0.194 0.162
uWaveGestureLibraryY 0.335 0.265 0.297 0.275 0.332 0.306 0.232 0.296 0.241
uWaveGestureLibraryZ 0.297 0.259 0.295 0.271 0.245 0.298 0.265 0.204 0.194

wafer 0 0 0.004 0.003 0.003 0.003 0 0 0
WordsSynonyms 0.429 0.343 0.406 0.42 0.368 0.391 0.338 0.387 0.314

yoga 0.202 0.158 0.145 0.155 0.142 0.138 0.112 0.139 0.128

Winning times 2 2 0 9 6 2 19 7 7
AVG arithmetic ranking 7.425 6.825 7.2 4.025 4.55 5.15 2.175 3.375 3.075
AVG geometric ranking 6.860 6.131 7.043 3.101 3.818 4.675 1.789 2.868 2.688

MPCE 0.039 0.043 0.041 0.023 0.025 0.028 0.017 0.021 0.019

• MLP, FCN, and ResNet. These three models were proposed
in [38] as strong baselines on the UCR time series datasets.
They have the same framework: an input layer, followed
by three hidden basic blocks, and finally a softmax output.
MLP adopts a fully-connected layer as its basic block, FCN
and ResNet adopt a fully convolutional layer and a residual
convolutional network, respectively, as their basic blocks.

• MLP-RCF, FCN-RCF, and ResNet-RCF. The three models use
the basic blocks of MLP/FCN/ResNet as theψ model of RCF
in Eq. (5). We compare them with MPL/FCN/ResNet to verify
the effectiveness of RCF.
• Wavelet-RCF. This model has the same structure as ResNet-
RCF but replaces the mWDN part with a standard MDWD
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with fixed parameters. We compare it with ResNet-RCF to
verify the effectiveness of trainable parameters in mWDM.

For each dataset, we ran a model 10 times and returned the
average classification error rate as the evaluation. To compare the
overall performances on all the 40 data sets, we further introduced
Mean Per-Class Error (MPCE) as the performance indicator for each
competitor [38]. Let Ck denote the amount of categories in the kth
dataset, and ek the error rate of a model on that dataset, MPCE of a
model is then defined as

MPCE =
1
K

K∑
l=1

ek
Ck
. (16)

Note that the factor of category amount is wiped out in MPCE. A
smaller MPCE value indicates a better overall performance.
Results & Analysis. Table 1 shows the experimental results, with
the summarized information listed in the bottom two lines. Note
that the best performance for each dataset is highlighted in bold,
and the second best is in italic. From the table, we have various
interesting observations. Firstly, it is clear that among all the com-
petitors, FCN-RCF achieves the best performance in terms of both
the largest number of wins (the best in 19 out of 40 datasets) and the
smallest MPCE value. While the baseline FCN itself also achieves a
satisfactory performance — the second largest number of wins at 9
and a rather small MPCE value at 0.023, the gap to FCM-RCF is still
rather big, implying the significant benefit from adopting our RCF
framework. This is actually not an individual case; from Table 1,
MLP-RCF performs much better than MLP on 37 datasets, and the
number for ResNet-RCF against ResNet is 27. This indicates RCF
is indeed a general framework compatible with different types of
deep learning classifiers and can improve TSF performance sharply.

Another observation is from the comparison between Wavelet-
RCF and ResNet-RCF. Table 1 shows that Wavelet-RCF achieved the
second overall performance on MPCE and AVG rankings, which in-
dicates that the frequency information introduced by wavelet tools
is very helpful for time series problems. It is clear from the table
that ResNet-RCF outperforms Wavelet-RCF on most of the datasets.
This strongly demonstrates the advantage of our RCF framework
in adopting parameter-trainable mWDN under the deep learning
architecture, rather than using directly the wavelet decomposition
as a feature engineering tool. More technically speaking, compared
with Wavelet-RCF, mWND-based ResNet-RCF can achieve a good
tradeoff between the prior of frequency-domain and the likelihoods
of training data. This well illustrates why RCF based models can
achieve much better results in the previous observation.

Summary. The above experiments demonstrate the superiority
of RCF based models to some state-of-the-art baselines in the TSC
tasks. The experiments also imply that the trainable parameters
in a deep learning architecture and the strong priors from wavelet
decomposition are two key factors for the success of RCF.

4.2 Task II: Time Series Forecasting
Experimental Setup.We tested the predictive power of mLSTM
on a visitor volume prediction scenario [35]. The experiment adopts
a real-life dataset namedWuxiCellPhone, which contains user-volume
time series of 20 cell-phone base stations located in the downtown
of Wuxi city during two weeks. Detail informantion of cell-phone
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Figure 4: Comparison of prediction performance with vary-
ing period lengths (Scenario I).
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Figure 5: Comparison of prediction performance with vary-
ing interval lengths (Scenario II).

data refers [30, 31, 34]. The time granularity of a user-volume series
is 5 minutes. In the experiments, we compared mLSTM with the
following baselines:
• SAE (Stacked Auto-Encoders), which has been used in vari-
ous TSF tasks [25].
• RNN (Recurrent Neural Networks) and LSTM (Long Short-
Term Memory), which are specifically designed for time se-
ries analysis.
• wLSTM , which has the same structure with mLSTM but
replaces the mWDN part with a standard MDWD.

We use three metrics to evaluate the performance of the models,
including Mean Absolute Percentage Error (MAPE) and Root Mean
Square Error (RMSE), which are defined as

MAPE =
1
T

T∑
t=1

|x̂t − xt |

xt
× 100%,

RMSE =

√√√
1
T

T∑
t=1

(x̂t − xt )
2,

(17)

where xt is the real value of the t-th sample in a time series, and
x̂t is the predicted one. The less value of the three metrics means
the better performance.

Results & Analysis.We compared the performance of the com-
petitors in two TSF scenarios suggested in [33]. In the first scenario,
we predicted the average user volumes of a base station in sub-
sequent periods. The length of the periods was varied from 5 to
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Figure 6: Samples of time series.

30 minutes. Fig. 4 is a comparison of the performance averaged
on the 20 base stations in one week. As can be seen, while all the
models experience a gradual decrease in prediction error as the
period length increases, that mLSTM achieves the best performance
compared with the baselines. Particularly, the performance of mL-
STM is consistently better than wLSTM, which again approves the
introduction of mWDN for time series forecasting.

In the second scenario, we predicted the average user volumes
in 5 minutes after a given time interval varying from 0 to 30 min-
utes. Fig. 5 is a performance comparison between mLSTM and the
baselines. Different from the tend we observed in Scenario I, the
prediction errors in Fig. 5 generally increase along the x-axis for
the increasing uncertainty. From Fig. 5 we can see that mLSTM
again outperforms wLSTM and other baselines, which confirms the
observations from Scenario I.

Summary. The above experiments demonstrate the superior-
ity of mLSTM to the baselines. The mWDN structure adopted by
mLSTM again becomes an important factor for the success.

5 INTERPRETATION
In this section, we highlight the unique advantage of our mWDN
model: the interpretability. Since mWDN is embedded with a dis-
crete wavelet decomposition, the outputs of the middle layers
in mWDN, i.e., xl (i ) and xh (i ), inherit the physical meanings of
wavelet decompositions. We here take two data sets for illustration:
WuxiCellPhone used in Sect. 4.2 and ECGFiveDays used in Sect. 4.1.
Fig. 6(a) shows a sample of the user number series of a cell-phone
base station in one day, and Fig. 6(b) exhibits an electrocardiogram
(ECG) sample.

5.1 The Motivation
Fig. 7 shows the outputs of mWDN layers in the mLSTM and RCF
models fed with the two samples given in Fig. 6, respectively. In
Fig. 7(a), we plot the outputs of the first three layers in the mLSTM
model as different sub-figures. As can be seen, from xh (1) to xl (3),
the outputs of the middle layers correspond to the frequency com-
ponents of the input series running from high to low. A similar
phenomenon could be observed in Fig. 7(b), where the outputs of
the first three layers in the RCF model are presented. This phenom-
enon again indicates that the middle layers of mWDN inherit the
frequency decomposition function of wavelet. Then here comes
the problem: can we evaluate quantitatively what layer or which
frequency of a time series is more important to the final output of

the mWDN based models? If possible, this can provide valuable
interpretability to our mWDN model.

5.2 Importance Analysis
We here introduce an importance analysis method for the proposed
mWDN model, which aims to quantify the importance of each
middle layer to the final output of the mWDN based models.

We denote the problem of time series classification/forecasting
using a neural network model as

p = M (x), (18)

where M denotes the neural network, x denotes the input series,
and p is the prediction. Given a well-trained model M , if a small
disturbance ε to the i-th element xi ∈ x can cause a large change to
the output p, we sayM is sensitive to xi . Therefore, the sensibility
of the networkM to the i-th element xi of the input series is defined
as the partial derivatives ofM (x) to xi as follows:

S (xi ) =
�����
∂M (xi )

∂xi

�����
=
�����
lim
ε→0

M (xi ) −M (xi − ε )

ε

�����
. (19)

Obviously, S (xi ) is also a function of xi for a givenmodelM . Given a
training data set X = {x̃1, · · · , x̃j , · · · , x̃J } with J training samples,
the importance of the i-th element of the input series x to the model
M is defined as

I (xi ) =
1
J

J∑
j=1

S (x̃
j
i ), (20)

where x̃ ji is the value of the i-th element in the j-th training sample.
The importance definition in Eq. (20) can be extended to the

middle layers in the mWDN model. Denoting a as an output of a
middle layer in mWDN, the neural networkM can be rewritten as

p = M (a(x)), (21)

and the sensibility ofM to a is then defined as

Sa (x) =
�����
∂M (a(x))
∂a(x)

�����
=
�����
lim
ε→0

M (a(x)) −M (a(x) − ε )
ε

�����
. (22)

Given a training data set X = {x̃1, · · · , x̃j , · · · , x̃J }, the importance
of a w.r.t.M is calculated as

I (a) =
1
J

J∑
j=1

Sa (x̃j ). (23)

The calculation of ∂M
∂xi

and ∂M
∂a in Eq. (19) and Eq. (22) are given in

the Appendix for concision. Eq. (20) and Eq. (23) respectively define
the importance of a time-series element and an mWDN layer to an
mWDN based model.

5.3 Experimental Results
Fig. 8 and Fig. 9 shows the results of importance analysis. In Fig. 8,
the mLSTM model trained on WuxiCellPhone in Sect. 4.2 is used.
Fig. 8(b) exhibits the importance spectrum of all the elements, where
the x-axis denotes the increasing timestamps and the colors in
spectrum denote the varying importance of the features: the redder,
the more important. From the spectrum, we can see that the latest
elements are more important than the older ones, which is quite
reasonable in the scenario of time series forecasting and justifies
the time value of information.
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Figure 8: Importance spectra of mLSTM on WuxiCellPhone.

Fig. 8(a) exhibits the importance spectra of the middle layers
listed from top to bottom in the increasing order of frequency.
Note that for the sake of comparison, we resize the lengths of
the outputs to the same. From the figure, we can observe that i)
the lower frequency layers in the top are with higher importance,
and ii) only the layers with higher importance exhibit the time
value of the elements as in Fig. 8(b). These imply that the low
frequency layers in mWDN are crucially important to the success of
time series forecasting. This is not difficult to understand since the
information captured by low frequency layers often characterizes
the essential tendency of human activities and therefore is of great
use to revealing the future.

Fig. 9 depicts the importance spectra of the RCF model trained
on the ECGFiveDay data set in Sect. 4.1. As shown in Fig. 9(b), the
most important elements are located in the range from roughly 100
to 110 of the time axis, which is quite different from that in Fig. 8(b).
To understand this, recall Fig. 6(b) that this range corresponds to
the T-Wave of electrocardiography, covering the period of the heart
relaxing and preparing for the next contraction. It is generally
believed that abnormalities in the T-Wave can indicate seriously
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Figure 9: Importance spectra of RCF on ECGFiveDays.

impaired physiological functioning 2. As a result, the elements
describing T-Wave are more important to the classification task.

Fig. 9(a) shows the importance spectra of middle layers, also
listed from top to bottom in the increasing order of frequency.
It is interesting that the phenomenon is opposite to the one in
Fig. 8(a); that is, the layers in high frequency are more important
to the classification task on ECGFiveDays. To understand this, we
should know that the general trends of ECG curves captured by
low frequency layers are very similar for everyone, whereas the
abnormal fluctuations captured by high frequency layers are the real
distinguishable information for heart diseases identification. This
also indicates the difference between a time-series classification
task and the a time-series forecasting task.

Summary. The experiments in this section demonstrate the
interpretability advantage of the mWDN model stemming from the
integration of wavelet decomposition and our proposed importance
analysis method. It can also be regarded as an indepth exploration
to solve the black box problem of deep learning.

2https://en.m.wikipedia.org/wiki/T_wave
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6 RELATEDWORKS
Time Series Classification (TSC). The target of TSC is to assign
a time series pattern to a specific category, e.g., to identify a word
based on series of voice signals. Traditional TSC methods could be
classified into three major categories: distance based, feature based,
and ensemble methods [6]. Distance based methods predict the
category of a time series by comparing the distances or similarities
to other labeled series. The widely used TSC distances includes
the Euclidean distance and dynamic time warping (DTW) [2], and
DTWwith KNN classifier has been the state-of-the-art TSC method
for a long time [18]. A defect of distance based TSC methods is the
relatively high computational complexity. Feature based methods
overcome this defect by training classifiers on deterministic features
and category labels of time series. Traditional methods, however,
usually depend on handcraft features as inputs, such as symbolic
aggregate approximation and interval mean/deviation/slop [8, 22].
In recent years, automatic feature engineering was introduced to
TSC, such as time series shapelets mining [11], attention [27] and
deep learning based representative learning [20]. Our study also
falls in this area but with frequency awareness. The well-known en-
semble methods for TSC include PROP [23], COTE [1], etc., which
aim to improve classification performance via knowledge integra-
tion. As reported by some latest works [6, 38], however, existing
ensemble methods are yet inferior to some distance based deep
learning methods.

Time Series Forecasting (TSF). TSF refers to predicting fu-
ture values of a time series using past and present data, which is
widely adopted in nearly all application domains [32, 36]. A classic
model is autoregressive integrated moving average (ARIMA) [3],
with a great many variants, e.g., ARIMA with explanatory variables
(ARIMAX) [21] and seasonal ARIMA (SARIMA) [39], to meet the
requirements of various applications. In recent years, a tendency
of TSF research is to introduce supervised learning methods, such
as support vector regression [16] and deep neural networks [41],
for modeling complicated non-linear correlations between past and
future states of time series. Two well-known deep neural network
structures for TSF are recurrent neural networks (RNN) [5] and
long short-term memory (LSTM) [10]. These indicate that an elab-
orate model design is crucially important for achieving excellent
forecasting performance.

Frequency Analysis of Time Series. Frequency analysis of
time series data has been deeply studied by the signal process-
ing community. Many classical methods, such as Discrete Wavelet
Transform [26], Discrete Fourier [12], and Z-Transform [17], have
been proposed to analysis the frequency pattern of time series sig-
nals. In existing TSC/TSF applications, however, transforms are
usually used as an independent step in data preprocessing [6, 24],
which have no interactions with model training and therefore might
not be optimized for TSC/TSF tasks from a global view. In recent
years, some research works, such as Clockwork RNN [19] and
SFM [15], begins to introduce the frequency analysis methodology
into the deep learning framework. To our best knowledge, our study
is among the very few works that embed wavelet time series trans-
forms as a part of neural networks so as to achieve an end-to-end
learning.

7 CONCLUSIONS
In this paper, we aim at building frequency-aware deep learning
models for time series analysis. To this end, we first designed a
novel wavelet-based network structure called mWDN for frequency
learning of time series, which can then be seamlessly embedded
into deep learning frameworks by making all parameters trainable.
We further designed two deep learning models based on mWDN
for time series classification and forecasting, respectively, and the
extensive experiments on abundant real-world datasets demon-
strated their superiority to state-of-the-art competitors. As a nice
try for interpretable deep learning, we further propose an impor-
tance analysis method for identifying important factors for time
series analysis, which in turn verifies the interpretability merit of
mWDN.
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APPENDIX
In a neural network model, the outputs of the layer l are connected
as the inputs of the layer l + 1. According to the chain rule, the
partial derivative of the modelM to middle layer outputs could be
calculated layer-by-layer as

∂M

∂a
(l )
i

=
∑
j

∂M

∂a
(l+1)
j

∂a
(l+1)
j

∂a
(l )
i

, (24)

where a(l )i is the i-th output of the layer l . The proposed models con-
tain types of layers: the convolutional, LSTM and fully connected
layers, which are discussed below.

For convolutional layers, only 1D convolutional operation is
used in our cases. The output of the layer l is a matrix with the size
of L × 1 × C , which is connected to neural matrix of the l + 1-th
with a convolutional kernel in the size of k × 1 × C . The partial
derivative ofM to the ith output of the layer l is calculated as

∂M

∂a
(l )
i

=

k−1∑
n=0

∂M

∂a
(l+1)
i−n

∂a
(l+1)
i−n

∂a
(l )
i

=

k−1∑
n=0

δ
(l+1)
i−n w

(l+1)
n f ′

(
a
(l )
i

)
,

where wn denotes the n-th element of the convolutional kernel,
δ
(l )
i =

∂M
∂a (l )

i

, and f ′
(
a
(l )
i

)
is the derivative of activation function.

For LSTM laysers, we denote the output of a LSTM unit in layer
l + 1 at time t as

a
t, (l+1)
i = f

(
bt, (l )

)
,

where bt (l ) is calculated as

bt, (l ) =
∑
i
wa
i a

t, (l )
i +

∑
i
wb
i b

t−1, (l )
i +

∑
i
ws
i s
t−1, (l )
i .

s
t−1, (l )
i is the history state that is saved in the memory cell. There-
fore, the partial derivative ofM to the at, (l )i is calculated as

∂M

∂a
(l )
i

=
∑
t

∂M

∂bt, (l )
∂bt, (l )

∂a
t, (l )
i

=
∑
t
δ
t, (l+1)
i f ′(bt, (l ) )θ

t, (l )
i ,

where θ t, (l )i is an equation as

θ
t, (l )
i =

*.
,
wa
i +w

b
i
∂bt+1, (l )

∂a
t+1, (l )
i

+ws
i
∂st+1, (l )

∂a
t+1, (l )
i

+/
-
.

The derivative ∂s t, (l )

∂at, (l )i

in the above equation is calculated as

∂st, (l )

∂a
t, (l )
i

= st−1, (l )
∂bt, (l )

∂a
t, (l )
i

+
∂bt, (l )

∂a
t, (l )
i

f (a
t, (l )
i ) + bt, (l ) f ′(a

t, (l )
i ).

For fully connect layers, the output a(l )i = f (wia
(l−1)
i +b). Then

the partial derivative is equal to

wi f
′(wia

(l−1)
i + b).
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