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Much attention has been drawn to the potential of machine learning
(ML) in assisting human decision making.

Binary classification decision making is a foundational building block
of related works.

Accuracy is insufficient to evaluate the quality of binary classifiers.

Example : Prostate Cancer

In the U.S., about 1.4 percent of men aged 44 to 64 have prostate cancer.
A simple prediction of all patients as low risk would result in an accuracy
higher than 95%.
This high accuracy diagnosis strategy is not intended because it does not
distinguish between high risk and low risk groups.

The ROC (Receiver operating characteristics) curve is an alternative
to accuracy and plays a key role in the binary classification problem.
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Suppose there are 100 diseased and 100 healthy people, a doctor
diagnoses 20 of the healthy as diseased, and 10 diseased are missed.
The TPR/FPR of the doctor is (0.9, 0.2).
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Let Xi be a set of features.
Let Yi ∈ {0, 1} be the outcome (label), Ŷi ∈ {0, 1} the prediction.
Let p̂ (Xi) ∈ [0, 1] a sample estimate of the probability of the label
taking 1 conditional on the features.
Recall the definitions (in sample):

TPR =
Outcome True, Predicted Positive

Outcome True
=

∑n
i=1 YiŶi∑n
i=1 Yi

,

FPR =
Outcome False, Predicted Positive

Outcome False
=

∑n
i=1 (1− Yi) Ŷi∑n
i=1 (1− Yi)

.

A ROC curve is the collection of the set of all TPR/FPR pairs
corresponding to decision rules Ŷi = 1 (p (Xi) > c) , c ∈ [0, 1].
Let α̂ (c) = FPR (c), β̂ (c) = TPR (c).

ROC := α̂ (c) 7→ β̂
(
α̂−1 (α)

)
.

It present the tradeoff between TPR and FPR.
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Sample of ROC curve.
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We provide a statistical formulation of the ROC curve, we demonstrate:

The relation between ROC curve with loss (utility) function and decision
rule.

Confidence level for an estimated ROC to account for its sampling
uncertainty.

The influence of AUC (area under curve) and its implication for
model selection.
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Neyman Pearson Lemma and Decision Rules
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Binary decision making is inherently related to hypothesis testing.
For a general classification rule Ŷi = 1 (Xi ∈ R), denote the
population analogs of TPR/FPR as PTPR and PFPR

TPR
P−→ PTPR ≡ E [Yi1 (Xi ∈ R)]

p
,

FPR
P−→ PFPR ≡ E [(1− Yi)1 (Xi ∈ R)]

1− p
.

where p = E [Yi] is the overall population portion of positive labels.

Then by Bayes law

PTPR =

∫
1 (X ∈ R) f (X|Y = 1) dX, PFPR =

∫
1 (X ∈ R) f (X|Y = 0) dX.

PTPR is the power of the test; PFPR is the size of the test.
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The classical Neyman Pearson Lemma states that the collection of
likelihood ratio tests

RNP (d) =

{
x :

f (X|Y = 1)

f (X|Y = 0)
> d

}
,

where d ∈ (0,∞) varies, are most powerful tests that maximize
power for whatever size it achieves.

By the Bayes law, write

RNP (d) =

{
x :

p (x)

1− p (x)
> d

p

1− p

}
=

{
x : p (x) > c =

dp

1− p+ dp

}
,

where p (Xi) = P (Yi = 1|Xi) is the true probability function.

Consequently, the ROC corresponding to the decision rules

ŷ = 1 (p (x) > c) c ∈ [0, 1]

has the Neyman-Pearson optimality that it lies weakly above the
ROC of any alternative collection of decision rules.
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With arbitrary cost functions, Bayesian optimal PTPR/PFPR pair can
lie below the optimal ROC curve or even below the 45 degree line.

Consider the Loss (function) “matrix”

Ŷ = 0 Ŷ = 1

Y = 0 0 C0R (x)
Y = 1 C1A (x) 0

The minimizing rejection region R is then

R̄ =

{
x : p (x) > c (x) =

c0R (x)

c0R (x) + c1A (x)

}
.
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Statistical Inference of ROC Curves
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We derived asymptotic pointwise confidence bands for an estimated
ROC to account for its sampling uncertainty.

Consider parametric models of p (Xi, θ) under i.i.d sampling
assumptions, write TPR/FPR as

β̂ (c) =
1/n

∑n
i=1 yi1

(
p
(
xi, θ̂

)
> c
)

p̂
,

α̂ (c) =
1/n

∑n
i=1 (1− yi)1

(
p
(
xi, θ̂

)
> c
)

1− p̂
,

where p̂ = 1/n
∑n

i=1 yi .

The PTPR and PFPR are written as

β (c) =
1

p
E [p (X)1 (p (X, θ0) > c)] ,

α (c) =
1

1− p
E [(1− p (X))1 (p (X, θ0) > c)] .

Let β̂α = β̂
(
α̂−1 (α)

)
and βα = β

(
α−1 (α)

)
.
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To construct an asymptotic confidence inteval for βα,

lim inf
n→∞

P
(
β̂α − d̂ ≤ βα ≤ β̂α + d̂

)
≥ 1− η, (1)

we derive the asymptotic distribution of β̂α − βα:

Theorem

Assuming p (x, θ) satisfies a typical stochastic equicontinuity condition and

there is a consistent estimate of θ̂ with an asymptotic linear influence
function representation

√
n
(
θ̂ − θ0

)
=

1√
n

n∑
i=1

κi + oP (1) , where κi = κ (yi, xi) (2)

Then, the asymptotic distribution of β̂α − βα is of the form:

√
n
(
β̂α − βα

)
=

1√
n

n∑
i=1

ψi + oP (1) , where ψi = ψ (yi, xi, α) . (3)

It follows that
√
n
(
β̂α − βα

)
d−→ N

(
0, σ2

)
, where σ2 = V ar (ψi) .
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We estimated the asymptotic distribution by sample analogs and by
bootstrapping.

The data generating process is specified to be a logit model,

p (X) = exp (X ′β) / (1 + exp (X ′β))

where X = (X1, X2), β = (1,−0.5), X1 ∼ N(2, 1), X2 ∼ N(0, 1),
B ∼ Uniform(0, 1) and Y = 1(p(X1, X2) > B), X1 and X2 are
independent.
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AUC and Model Comparison and Selection

15 / 24



The sample AUC corresponding to θ is given by

SAUC (θ) =
1

n2p̂ (1− p̂)

n∑
i=1

n∑
j=1

1
(
p
(
xi, θ̂

)
> p

(
xj , θ̂

))
yi (1− yj) .

This takes the form of a U-process and converges to a population
AUC, defined as

PAUC (θ)

=
1

p (1− p)

∫∫
1 (p (x, θ) > p (w, θ)) p (x) (1− p (w)) f (x) f (w) dxdw.

This integral would be maximized if the indicator is turned on
whenever p (x) > p (w).

Under correct specification, this can obviously be achieved when
θ = θ0, where p (x, θ0) = p (x) > p (w) = p (w, θ0) .
Therefore, by standard M-estimator arguments (Newey and
McFadden, 1994) the maximum AUC estimator is consistent under
correct specification and suitable sample regularity conditions.
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We prove by further use the the U-process stochastic equicontinuity
results in (Sherman, 1993).

Theorem

Let

η (zi, zj , θ) = (1 (p(xi, θ) > p (xj , θ))−A) yi (1− yj) ,

and Q (θ) = E [η (zi, zj , θ)], then

√
n
(
Â−A

)
=

1√
n

n∑
i=1

ξi + oP (1) ,
√
n
(
Â−A

)
d−→ N (0, V ar (ξi)) , (4)

the asymptotic covariance can be calculate as

ξi =
1

p (1− p)

[
η1 (zi, θ

∗) + η2 (zi, θ
∗) +

∂

∂θ
Q (θ∗)κi

]
,

in which

η1 (zi, θ) = Ezj [η (zi, zj , θ)] , η2 (zj , θ) = Ezi [η (zi, zj , θ)] .
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The results derived above provide the basis for constructing model
tests.

It is possible that a different criterion function, such as cross entropy,
is used to estimate parameters before the use of the AUC criterion for
model selection.

Consider two competing models with parameters θ and ϑ, and

corresponding sample AUCs Â1

(
θ̂
)

and Â2

(
ϑ̂
)

, then it follows from

(4) that

Â1

(
θ̂
)
− Â2

(
ϑ̂
)

= (A1 (θ∗)−A2 (ϑ∗)) +
1

n

n∑
i=1

(
ξ1i − ξ2i

)
+ oP

(
1√
n

)
.

A test of the null hypothesis of A1 (θ∗) = A2 (ϑ∗) between two
models relies on asymptotic distribution of ξ1i − ξ2i .
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Next table reports an AUC-based model selection exercise between
two misspecfied models.

The model (M1) is a logit model with p(X1) = exp(θ1X1)
1+exp(θ1X1)

; the

model (M2) is a logit model with p(X2) = exp(θ2X2)
1+exp(θ2X2)

.

Table: Model Selection

Bootstrap Theoretical

A1 (mean) 0.7341 0.7314
A2 (mean) 0.6214 0.6191
A1-A2 (mean) 0.1127 0.1124
A1-A2 (std) 0.0102 0.0103

We obtain a significant z score: z =
Â1(θ̂)−Â2(ϑ̂)

std(Â1(θ̂)−Â2(ϑ̂))
, which rejects

the null hypothesis that M1 is equivalent to M2.
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Application
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A data set derived from Haidian District Maternal and Child Health
Hospital in Beijing, comprehensively records birth process in the
hospital from 2001 to 2010.

Altogether 545 features are available for each observation, including
blood test, urine test and pregnogram examination results.

The data used in the current analysis includes 108911 records, a total
of 15.5% of our sample had hyperglycemia in pregnancy.

We used a logistic regression with L1 regularization for prediction and
used an 8:2 training and test partition.

Only data collected up to the 20th week are used for prediction.
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If we use all the features, the AUC of the model is 0.6988± 0.0092.
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One may interested in whether certain types of checks are better for
prediction.
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The AUC of pregnogram examination features is 0.6506± 0.0098.
The AUC of blood test features is 0.5738± 0.0107.
We can further get std(AUCP − AUCB) = 0.0080,
the z score: z = 9.60, which implies that the pregnogram model is better.

Figure: Capabilities of pregnogram and blood test features to predict
hyperglycemia in pregnancy
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“Decision Making with Machine Learning and ROC Curves”
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3382962
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