

The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining August 14–18, 2021, Singapore.

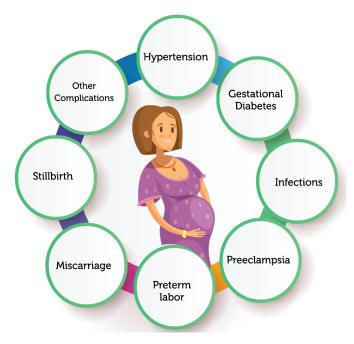
RAPT: Pre-training of Time-Aware Transformer for Learning Robust Healthcare Representation

Houxing Ren, Jingyuan Wang, Wayne Xin Zhao, Ning Wu

Beihang University, Beijing, China

Renmin University of China, Beijing, China

- Pregnancy complications, such as gestational diabetes and gestational hypertension, create severe threats to the health of pregnant women.
- It has been reported that about 300,000 women died due to complications in pregnancy and childbirth in 2017.



Complications During Pregnancy

Early Study

- For specific task.
 - Diagnosis prediction
 - Risk prediction

- To address unique issues.
 - Irregular time intervals
 - Data insufficiency
- It is difficult to reuse these existing methods to provide a general solution for pregnancy complications!
- How to learn effective representations from EHR data, which can capture the major data characteristics of examination records?

Challenges

• EHR data change with irregular time intervals.

- examination records of prenatal care correspond to **irregularly distributed samples** of women's physical characteristics during the entire pregnancy
- Different pregnancy complications usually correspond to varying factors or indicators.
 - gestational diabetes is more sensitive to **timesteps**
 - gestational hypertension is more sensitive to **specific week**

The EHR data tend to be sparse or incomplete.

• only **a few items** are checked at each visit

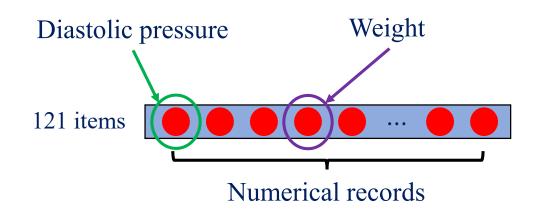
• Learn robust representation with **pre-training technique**.

• Design a suitable network architecture for pretraining on EHR data.

 Design pre-training tasks that can effectively extract data characteristics and address EHR data issues.

Definition

Examination Record.



Blood Type A B AB O 2 items 1 0 0 0 A total of 8 categories

Categorical records

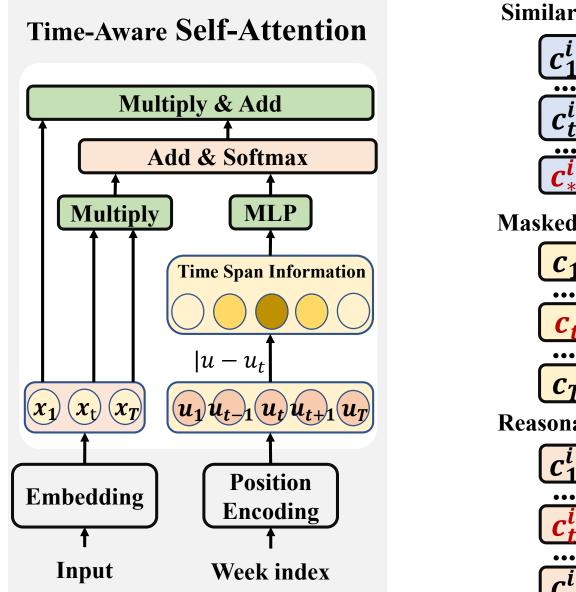
 $\tau_{\rm T} = 40$ (T =

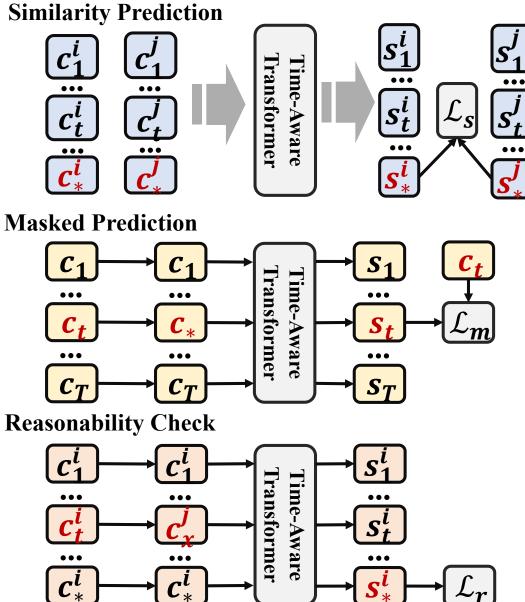
 $\tau_2 = 27$ $\tau_3 = 31$

Different T for different pregnant women

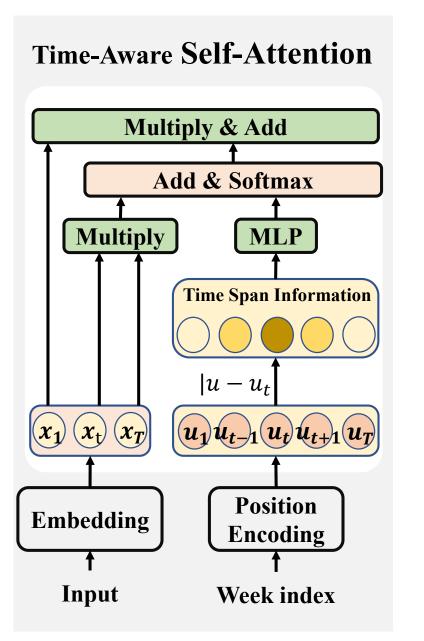
Different τ_i for different pregnant women

Overview





Time-Aware Self-Attention



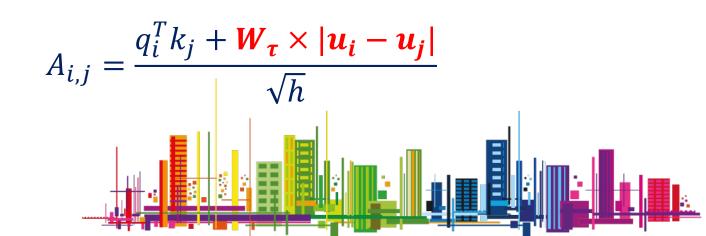
Standard Self-Attention

$$A_{i,j} = \frac{q_i^T k_j}{\sqrt{h}}$$

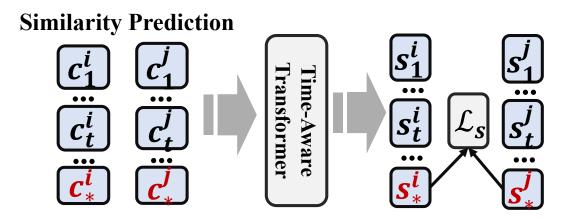
Self-Attention with week index

$$A_{i,j} = \frac{x_i^T x_j + x_i^T u_j + u_i^T x_j + u_i^T u_j}{\sqrt{h}}$$

Time-Aware Self-Attention



Similarity Prediction

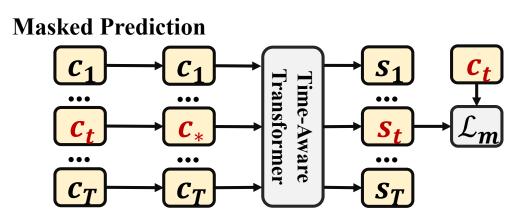


• Measure the Euclidean distance of all pregnant women's last visits.

• Take the 15% pairs with the smallest distance as the positive samples and the 15% pairs with the largest distance as the negative samples to train the model.

$$\mathcal{L}_{s} = \frac{1}{N_{p}} \sum_{i=1}^{N_{p}} z_{i} d_{i}^{2} + (1 - z_{i}) max(m - d_{i}, 0)$$

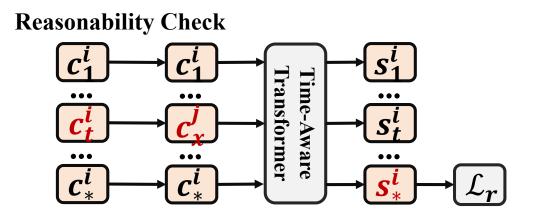
Masked Prediction



- **•** Randomly mask 30% of all visits by c_* .
- Use the corresponding hidden state to predict the important examination records.

$$\mathcal{L}_{\mathrm{m}} = \frac{1}{|C^{\dagger}|} \sum_{c^{\dagger} \in C^{\dagger}} ||\hat{c}^{\dagger} - c^{\dagger}||_{2}^{2}$$

Reasonability Check



Negative samples: randomly select 50% - 75% visits and replace them with visits from other sequences.

Positive samples: do nothing.

$$\mathcal{L}_{\mathrm{r}} = -\frac{1}{N_{\mathrm{r}}} \sum_{i=1}^{N_{\mathrm{r}}} (\mathrm{r}_{i} \log(\hat{r}_{i}) + (1 - \mathrm{r}_{i}) \log(1 - \hat{r}_{i})$$

Model Training

Pre-training.

 Pre-train the model with three pretraining tasks for robust representation.

Fine-tuning.

 Fine-tune the model with specific task for better performance.

Algorithm 1 The training algorithm for the RAPT model.

Input: A pregnant women examination records dataset *X*. **Output:** Model parameters θ_I , θ_T and θ_F .

- 1: Randomly initialize θ_I , θ_T , θ_P and θ_F .
- 2: **for** episode = 1 to epoch **do**
- 3: Calculate representations of visit sequence $S^{(i)}$ by Eq. (8).
- 4: Calculate loss of pre-training by Eq. (14).
- 5: Perform stochastic gradient descent on Eq. (14) w.r.t. θ_I , θ_T and θ_P .
- 6: end for
- 7: Drop θ_P and keep other parameters.
- 8: **for** episode = 1 to epoch **do**
- 9: Calculate representations of visit sequence $s_*^{(i)}$ by Eq. (8).
- 10: Calculate loss of fine-tuning by Eq. (16) or Eq. (18).
- 11: Perform stochastic gradient ascent on Eq. (16) or Eq. (18) w.r.t. θ_I , θ_T and θ_F .
- 12: **end for**
- 13: **return** θ_I , θ_T and θ_F .

Dataset.

Dataset statistics

- A hospital in Beijing
- From 2008 to 2018
- 63,001 pregnant women

Dataset	Pre-train	Diab.	Hype.	Outcome	Period
# of samples	63,001	20,160	5,744	8,514	1,556
# of visits	427,369	137,873	38,600	57,081	19,434
Avg. # of visits	6.78	6.84	6.72	6.70	12.49
Avg. week of FV	13.82	14.46	14.51	14.50	14.63
Avg. week of LV	28.18	28.23	28.21	28.20	36.96

Downstream Task

- Gestational Diabetes Prediction
- Gestational Hypertension Prediction
- Pregnancy Outcome Prediction.
- Risk Period Prediction.

Metric & Baseline

Metric

- Classification Task: AUC, Precision, Recall, F1, ACC.
- Regression Task: RMSE, MAE, MPAE, R2, EV.

Baseline

- LSTM [Neural Comput. 1997] : Long Short-Term Memory.
- Transformer [NIPS 2017] : based solely on attention mechanisms.
- RETAIN [NIPS 2016] : <u>Reverse Time Attention</u>.
- T-LSTM [KDD 2017] : Time-aware LSTM.
- Dipole [KDD 2017] : <u>Diagnosis prediction model</u>.
- HiTANet [KDD 2020] : <u>Hi</u>erarchical <u>Time-aware Attention Network</u>.

Г	Task		Diabo	etes Predict	ion			Task	Hypertension Prediction					
М	etric	ACC ↑	Pre ↑	Recall ↑	F1 ↑	AUC ↑	M	etric	ACC ↑	Pre ↑	Recall ↑	F1 ↑	AUC ↑	
	LSTM	0.670	0.559	0.934	0.699	0.738		LSTM	0.735	0.703	0.775	0.743	0.810	
	Trans.	0.737	0.643	0.872	0.740	0.811		Trans.	0.733	0.677	0.826	0.744	0.800	
	RETAIN	0.644	0.522	0.971	0.679	0.708		RETAIN	0.738	0.681	0.812	0.741	0.814	
Model	T-LSTM	0.726	0.631	0.891	0.739	0.795	Model	T-LSTM	0.738	0.625	0.901	0.738	0.815	
	Dipole	0.724	0.675	0.794	0.730	0.790		Dipole	0.737	0.730	0.746	0.738	0.812	
	HiTANet	0.747	0.723	0.764	0.743	0.813		HiTANet	0.739	0.718	0.777	0.746	0.811	
	RAPT	0.807	0.836	0.763	0.798	0.867		RAPT	0.746	0.671	0.840	0.749	0.820	
Г	Task	F	regnancy	Outcome P	rediction		7	Task	Risk Period Prediction					
М	etric	RMSE ↓	MAE \downarrow	MAPE ↓	R2 ↑	EV ↑	M	etric	ACC ↑	Pre ↑	Recall ↑	F1 ↑	AUC ↑	
	LSTM	10.661	7.449	0.094	0.000	0.000		LSTM	0.909	0.770	0.838	0.802	0.959	
	Trans.	8.620	5.319	0.068	0.338	0.339		Trans.	0.908	0.767	0.808	0.784	0.947	
	RETAIN	9.046	5.812	0.081	0.246	0.261		RETAIN	0.848	0.550	0.694	0.613	0.854	
Model	T-LSTM	10.664	7.454	0.104	-0.001	0.000	Model	T-LSTM	0.908	0.772	0.821	0.795	0.960	
	Dipole	9.229	6.200	0.079	0.232	0.233		Dipole	0.918	0.807	0.824	0.812	0.965	
	HiTANet	8.631	5.377	0.077	0.337	0.337		HiTANet	0.900	0.759	0.775	0.767	0.943	
	RAPT	8.525	5.184	0.063	0.350	0.352		RAPT	0.976	0.964	0.925	0.944	0.985	

• Gestational diabetes is more sensitive to **timesteps**.

• Models considering **irregular time intervals** achieve better performance.

]	Fask		Diabo	etes Predict	ion]	lask	Hypertension Prediction				
М	letric	ACC ↑	Pre ↑	Recall ↑	F1 ↑	AUC ↑	М	etric	ACC ↑	ACC \uparrow Pre \uparrow Recall \uparrow F1 \uparrow		AUC ↑	
	LSTM	0.670	0.559	0.934	0.699	0.738		LSTM	0.735	0.703	0.775	0.743	0.810
	Trans.	0.737	0.643	0.872	0.740	0.811		Trans.	0.733	0.677	0.826	0.744	0.800
	RETAIN	0.644	0.522	0.971	0.679	0.708		RETAIN	0.738	0.681	0.812	0.741	0.814
Model	T-LSTM	0.726	0.631	0.891	0.739	0.795	Model	T-LSTM	0.738	0.625	0.901	0.738	0.815
	Dipole	0.724	0.675	0.794	0.730	0.790		Dipole	0.737	0.730	0.746	0.738	0.812
	HiTANet	0.747	0.723	0.764	0.743	0.813		HiTANet	0.739	0.718	0.777	0.746	0.811
	RAPT	0.807	0.836	0.763	0.798	0.867		RAPT	0.746	0.671	0.840	0.749	0.820
]	Task Pr		regnancy	Outcome P	rediction]	Task Risk Period Prediction				iction	
М	letric	RMSE ↓	MAE ↓	MAPE ↓	R2 ↑	EV ↑	М	etric	ACC ↑	Pre ↑	Recall ↑	F1 ↑	AUC ↑
	LSTM	10.661	7.449	0.094	0.000	0.000		LSTM	0.909	0.770	0.838	0.802	0.959
	Trans.	8.620	5.319	0.068	0.338	0.339		Trans.	0.908	0.767	0.808	0.784	0.947
	RETAIN	9.046	5.812	0.081	0.246	0.261		RETAIN	0.848	0.550	0.694	0.613	0.854
Model	T-LSTM	10.664	7.454	0.104	-0.001	0.000	Model	T-LSTM	0.908	0.772	0.821	0.795	0.960
	Dipole	9.229	6.200	0.079	0.232	0.233		Dipole	0.918	0.807	0.824	0.812	0.965
	HiTANet	8.631	5.377	0.077	0.337	0.337		HiTANet	0.900	0.759	0.775	0.767	0.943
	RAPT	8.525	5.184	0.063	0.350	0.352		RAPT	0.976	0.964	0.925	0.944	0.985

Gestational hypertension is more sensitive to examination records of specific weeks.
Models considering irregular time intervals perform worse than models considering other characteristics.

7	[ask		Diabo	etes Predict	ion		7	[ask	Hypertension Prediction				
М	letric	ACC ↑	Pre ↑	Recall ↑	F1 ↑	AUC ↑	M	letric	ACC \uparrow Pre \uparrow Recall \uparrow F1 \uparrow		F1 ↑	AUC ↑	
	LSTM	0.670	0.559	0.934	0.699	0.738		LSTM	0.735	0.703	0.775	0.743	0.810
	Trans.	0.737	0.643	0.872	0.740	0.811		Trans.	0.733	0.677	0.826	0.744	0.800
	RETAIN	0.644	0.522	0.971	0.679	0.708		RETAIN	0.738	0.681	0.812	0.741	0.814
Model	T-LSTM	0.726	0.631	0.891	0.739	0.795	Model	T-LSTM	0.738	0.625	0.901	0.738	0.815
	Dipole	0.724	0.675	0.794	0.730	0.790		Dipole	0.737	0.730	0.746	0.738	0.812
	HiTANet	0.747	0.723	0.764	0.743	0.813		HiTANet	0.739	0.718	0.777	0.746	0.811
	RAPT	0.807	0.836	0.763	0.798	0.867		RAPT	0.746	0.671	0.840	0.749	0.820
]	Task		Pregnancy Outcome Prediction					ſask	Risk Period Prediction				
M	letric	RMSE ↓	MAE \downarrow	MAPE ↓	R2 ↑	EV ↑	M	letric	ACC ↑	Pre ↑	Recall ↑	F1 ↑	AUC ↑
	LSTM	10.661	7.449	0.094	0.000	0.000		LSTM	0.909	0.770	0.838	0.802	0.959
	Trans.	8.620	5.319	0.068	0.338	0.339		Trans.	0.908	0.767	0.808	0.784	0.947
	RETAIN	9.046	5.812	0.081	0.246	0.261		RETAIN	0.848	0.550	0.694	0.613	0.854
Model	T-LSTM	10.664	7.454	0.104	-0.001	0.000	Model	T-LSTM	0.908	0.772	0.821	0.795	0.960
	Dipole	9.229	6.200	0.079	0.232	0.233		Dipole	0.918	0.807	0.824	0.812	0.965
	HiTANet	8.631	5.377	0.077	0.337	0.337		HiTANet	0.900	0.759	0.775	0.767	0.943
	RAPT	8.525	5.184	0.063	0.350	0.352		RAPT	0.976	0.964	0.925	0.944	0.985

• Our model handles various characteristics in EHR data.

• Our model is consistently better than all of the baselines in all tasks.

Metric	ACC	Precision	Recall	F1	AUC
Human	0.763	1.000	0.0 10	0.701	
RAPT	0.746	0.671	0.840	0.749	0.820

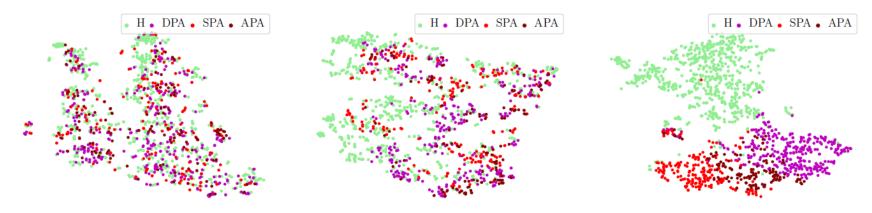
• Human performance is measured with the gold standard.

The gold standard do not have the ability to **predict future examination records**.

The diagnosis of our model is **timelier**.

Qualitative Analysis

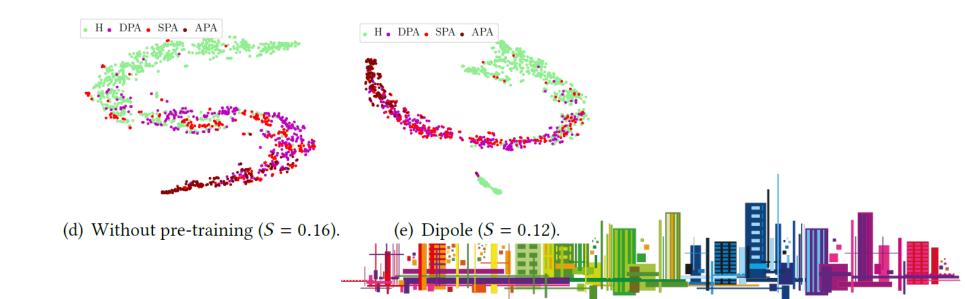
Scatter plots for embeddings



(a) Without training (S = -0.08).

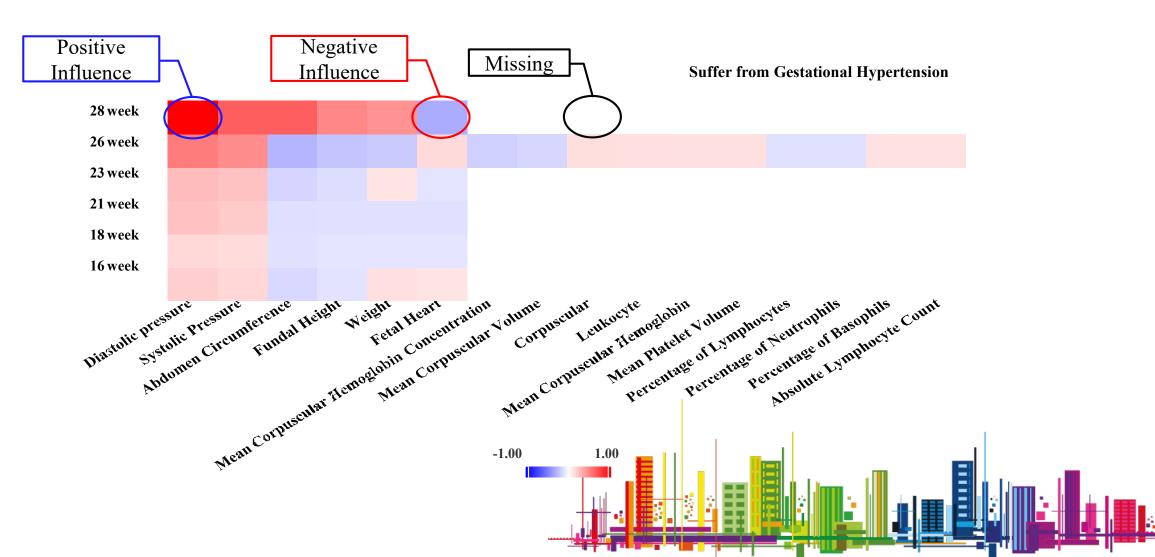
(b) Pre-trained (S = -0.02).

(c) Fine-tuned (S = 0.33).



Diagnosis System

Interface for doctors



• We design a novel network architecture which is suitable for modeling EHR data and pretraining.

• We carefully design three pre-training tasks for medical data related to pregnancy complications.

 We introduced an interpretation method by sensitivity analysis and designed an interface to show the prediction results and interpretation.

Thank You!

