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Some asymptomatic individuals carrying SARS-CoV-2 can transmit the
virus and contribute to outbreaks of COVID-19. Here, we use detailed
surveillance data gathered during COVID-19 resurgences in six cities of
China at the beginning of 2021 to investigate the relationship between
asymptomatic proportion and age. Epidemiological data obtained before
mass vaccination provide valuable insights into the nature of pathogenicity
of SARS-CoV-2. The data were collected by multiple rounds of city-wide
PCR testing with contact tracing, where each patient was monitored for
symptoms through the whole course of infection. The clinical endpoint
(asymptomatic or symptomatic) for each patient was recorded (the
pre-symptomatic patients were classified as symptomatic). We find that the
proportion of infections that are asymptomatic declines with age (coefficient =
−0.006, 95% CI: −0.008 to −0.003, p < 0.01), falling from 42% (95% CI: 6–78%)
in age group 0–9 years to 11% (95% CI: 0–25%) in age group greater than 60
years. Using an age-stratified compartment model, we show that this age-
dependent asymptomatic pattern, together with the distribution of cases by
age, can explain most of the reported variation in asymptomatic proportions
among cities. Our analysis suggests that SARS-CoV-2 surveillance strategies
should take account of the variation in asymptomatic proportion with age.
1. Introduction
Theproportionof asymptomatic infections showsvast differences across theworld,
varying from 1.21% to 91.88% [1–3]. Once age-stratified, the fraction of asympto-
matic cases also show substantial variation in age [4–6]. Due to the potential
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threat of asymptomatic transmission in the community [7–10],
numerous studies have been performed to decipher the under-
lying mechanism [11–21] and quantify the major drivers of
heterogenicity in asymptomatic infection [22,23].

Themain obstacles to understanding the drivers of asympto-
matic transmission include assessment of asymptomatic status
(for example, some studies define asymptomatic cases only
based on the symptom status when testing [24,25]), testing bias
[23,26] and sampling bias (for example, testing is more likely
to be completed in hospitalized individuals [27,28]). Because
passive surveillance is often limited to symptomatic cases, a sub-
stantial proportion of asymptomatic cases are expected to be
underreported [29,30]. Asymptomatic transmission poses a
great challenge to local governments and health systems in
terms of control policy [22,29,31–35]. Therefore, it is necessary
to identify the factors driving such heterogeneity in asympto-
matic proportions to design more efficiently surveillance
measures that include such subclass of the infected.

To address this heterogenicity, intensive, active surveillance
of SARS-CoV-2 infection is needed. Detailed surveillance data
collected during COVID-19 resurgences in six cities of China
in 2021 provide a valuable opportunity to study this issue. Mul-
tiple rounds of population-level PCR testing in each city
accelerated the speed of SARS-CoV-2 infection identification
(the cases have a short time interval between infection and
detection). Besides, it also improved the detection rate among
the currently infected irrespective of clinical outcome. The clini-
cal endpoint (asymptomatic or symptomatic) for each patient
was obtained by detailed surveillance across the whole course
of infection. The pre-symptomatic individuals are classified as
symptomatic because they will develop symptoms during the
course of infection. More importantly, epidemiological data
prior to mass vaccination provide valuable insight for the
nature of pathogenicity of SARS-CoV-2.Using this unique data-
set, we explored the potential factors that may contribute to
observed variations in the proportion of asymptomatic infec-
tions, and reported thereof. Our analysis has implications for
understanding the role of asymptomatic individuals in
COVID-19 transmission and can help guide future disease con-
trol policies that depend on the frequency of asymptomatic
cases as a hidden subgroup of infections.
2. Methods
2.1. The age-dependent asymptomatic proportion and

the total asymptomatic proportion
Based on the observed data, the asymptomatic proportion is
dependent on age. Let p1, …, p7 represent the asymptomatic pro-
portion of detected cases in age groups 0–9, 10–19, 20–29, 30–39,
40–49, 50–59, 60+, respectively. So, the total asymptomatic
proportion ( p) is calculated as follows:

p ¼
PG

i¼1 piNiPG
i¼1Ni

, whereNi is the number of cases in age group i:

The total asymptomatic proportion is a combination of the
age-dependent asymptomatic proportion and the SARS-CoV-2
case distribution in age.

2.2. Age-stratified compartment model fit to detected
SARS-CoV-2 data

Given the stochasticity and heterogeneity in the transmission of
SARS-CoV-2 [36,37], we developed an age-stratified discrete
stochastic compartment model that incorporated asymptomatic
and symptomatic cases. Specifically, we consider susceptible
(Si), latent (Li), pre-symptomatic (LPi), infectious asymptomatic
(IAi), infectious symptomatic (ISi), removed symptomatic (RSi)
and removed asymptomatic (RAi) individuals for age group i,
i = 1,…,G. The latent compartment represents the individuals
who are exposed to the virus but not contagious. The
pre-symptomatic compartment represents the individuals who
spread the virus before they develop symptoms, which is a feature
of SARS-CoV-2. Note that control measures (population-level PCR
tests and contact tracing) were implemented, so infected individ-
uals will be identified through population-level testing and
contact tracing. Therefore, they will be quarantined and exit the
transmission chain. Isolation is the dominant factor in removed
status. We assume that a constant proportion ðuÞ of infected
people exit from compartments Li, LPi, IAi and ISi. Individuals
receiving PCR tests will stay in the S compartment if the test results
are negative. Individuals exiting fromLi compartmentmaydevelop
symptoms with proportion of 1− pi, where pi is the proportion of Li
that becomes IAi in age group i. We did not consider the Ct value
from the PCR tests and assumed that the PCR tests will be posi-
tive if the individual is infected. The model structure and the
parameters involved are shown in electronic supplementary
material, figure S1. The full set of equations representing the
transmission for age group i is given by

Si(tþ1)¼Si(t)�bmiSi(t)
XG

j¼1

Cij{ISj(t)þrIAj(t)þkLPj(t)}
Nj

,

Li(tþ1)¼Li(t)þbmiSi(t)
XG

j¼1

Cij{ISj(t)þrIAj(t)þkLPj(t)}
Nj

�uLi(t)�s(1�u)piLi(t)�s(1�u)(1�pi)Li(t),
IAi(tþ1)¼ IAi(t)þs(1�u)piLi(t)�uIAi(t),
LPi(tþ1)¼LPi(t)þs(1�u)(1�pi)Li(t)�uLPi(t)

�spre(1�u)LPi(t),
ISi(tþ1)¼ ISi(t)þspre(1�u)LPi(t)�uISi(t):

In this study, s is the rate from Li to LPi or IAi. spre is the rate from
LPi to ISi. Therefore, 1=s is the latent period for asymptomatic
cases and pre-symptomatic cases. 1=spre is the pre-symptomatic
period for the symptomatic. Let b represent the transmission
probability for the effective contact with infectious symptomatic
individuals.We take the transmission probability for the effective
contactwith infectious asymptomatic individuals to be rb and the
transmission probability for the effective contact with pre-symp-
tomatic individuals to be kb.mi is the susceptibility to infection for
age-group i [38]. Cij is the number of contacts between age group i
and age group j per day. G is the number of age groups. The
values and priors for the parameters in the model are listed in
electronic supplementary material, table S1. The prior infor-
mation for pi was set according to the observation in each city.

Previous studies have shown that the contacts among
different age groups changed markedly before and during
the Chinese lockdown [32,39]. Considering this fact, two contact
matrices describing average contacts among age groups
before and during lockdown (electronic supplementary material,
table S2) were incorporated into the model. For each city,
the baseline contact matrix is used before lockdown date
and the lockdown contact matrix is used after lockdown
date. Although population-level testing and contact tracing
were implemented in each city, the effectiveness probably
differed among cities. To account for this, we used the location-
specific proportion of infection detection by contact tracing and
population-level testing (represented by parameter u in electronic
supplementary material, figure S1). A pre-symptomatic stage was
also included because a COVID-19 case can become infectious
before developing symptoms. We have two sets of observations:
the daily new asymptomatic infections and the daily new
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symptomatic infections given by case onset. These observations
correspond to the following equations:

RSðtÞ ¼
PG

i¼1 RSiðtÞ, where RSiðtÞ ¼ uISiðtÞ þ uLPiðtÞ þ uð1� piÞLiðtÞ,
RA(t) ¼

PG
i¼1 RAi(t), where RAi(t) ¼ uIAi(t)þ upiLi(t):

In the stochastic model, we assume that the daily asympto-
matic infections and the daily new symptomatic infections at
time t followed the Poisson distribution with mean of RSðtÞ
and RAðtÞ, respectively. We fitted RSðtÞ and RAðtÞ to the two
sets of observations with 3-day rolling mean. Model fitting was
performed using the Metropolis–Hastings Markov chain Monte
Carlo algorithm with the MATLAB (v. R2020a) toolbox mcmcstat
[40] (https://github.com/mjlaine/mcmcstat). One hundred
thousand iterations were set for burn-in. After that, another
100 000 iterations were performed. For Shijiazhuang and
Harbin, the onset date for the first case was a few days before
the date of confirmation (i.e. the date non-pharmaceutical inter-
ventions (NPIs) were launched), and u was set to be zero until
the confirmation date for the first case. The fitting results are
shown in electronic supplementary material, table S3.

2.3. The SARS-CoV-2 case data for six cities of China
We collected data on SARS-CoV-2 infections from six cities in
China (Shijiazhuang and Xingtai from Hebei province, Chang-
chun and Tonghua from Jilin province, Harbin and Suihua
from Heilongjiang province). The population size for the six
cities is approximately 9.8 million, 8.0 million, 8.6 million, 2.1
million, 9.5 million and 5.2 million, respectively. To detect all
ongoing infections as early as possible, the cities launched popu-
lation-level PCR tests with more than 48 million tests in total
(the actual number of tests should be higher than this since not
all the information about the number of PCR tests for each
round of population-level testing could be collected for this
study); for example, Shijiazhuang performed three rounds of
testing and Xingtai conducted as many as 10 rounds (electronic
supplementary material, table S4).

For each city, the detailed surveillance data were collected
from local Centers for Disease Control and Prevention, including
the gender, age and onset date. For each patient, the clinical end-
point (asymptomatic or symptomatic) was also collected over a
multi-week period.

2.4. The mobility data
In China, human movements were anonymously collected at the
city level with mobile phone data, through location-based ser-
vices (LBS) employed by the popular Baidu applications. We
used relative volume of inflows movement for each city from
the migration flows database (http://qianxi.baidu.com/). The
study period for Shijangzhuang, Xingtai, Changchun, Tonghua,
Harbin and Suihua was 23 December 2020–12 February 2021,
1 January 2021–24 January 2021, 10 January 2021–4 February
2021, 15 January 2021–9 February 2021, 6 January 2021–8
February 2021 and 9 January 2021–5 February 2021, respectively.

2.5. Age-dependent contact pattern
There are no specific contact matrices for the six cities in our study.
To perform the analysis, the contact matrices for Wuhan, Shanghai,
Changcha and Shenzhen before and after lockdown were down-
loaded from the studies of Zhang et al. [32,39]. The number in
each cell of contact matrices before lockdown were averaged
across four cities. There are 14 age groups in the original contact
matrix. Considering that our data may be not able to support
such detailed age groups, the averaged contact matrix was
merged according to the age groups in our study (i.e. seven age
groups). This is the baseline contact matrix. The same procedure
was applied to the contact matrices after lockdown. The lockdown
contact matrix was also obtained. The cities of Shijiazhuang, Xing-
tai and Tonghua performed lockdown intervention, while other
cities did not. To facilitate the comparison among these cities, we
took the date with the lowest inner-city mobility as the lockdown
date (electronic supplementary material, figure S2). Before this
date, the baseline contact matrix (describing the contact rate
among the different age groups) was used. After this date, the lock-
down contact matrix was used. The date for lockdown and the
date with the lowest inner-city mobility were closed (electronic
supplementary material, table S5). Here, we used the same contact
matrices (i.e. the baseline contact matrix and the lockdown contact
matrix; electronic supplementary material, table S2) for each city in
our study by assuming similar living habits across cities in China.
3. Results
3.1. The proportion of asymptomatic infections from

multiple rounds of population-level PCR tests with
patient follow-up

In order to understand heterogeneity in proportions of
asymptomatic infections under demographic influence, we
used detailed surveillance data gathered during COVID-19
resurgences in six cities of China at the beginning of 2021
to address this question. Previous studies show that local
demography may play a role in the observed geographical
and age-related heterogeneity of asymptomatic proportions
(electronic supplementary material, figures S3–S5 and table
S6). In this study, six cities in China (Shijiazhuang and Xingtai
from Hebei province, Changchun and Tonghua from Jilin
province, Harbin and Suihua from Heilongjiang province)
were geographically close and had similar COVID-19 resur-
gences temporally, while manifesting heterogeneous
asymptomatic proportions. All cities launched multi-round
population-level PCR testing (applied to all the individuals
in a city; electronic supplementary material, table S4) com-
bined with detailed contact tracing and surveillance,
making it a quick identification of SARS-CoV-2 infection
regardless of whether displaying symptoms. Contact tracing
was triggered if an individual was positive by PCR test, irre-
spective of the symptom status. So, the primary cases (being
symptomatic or asymptomatic) from contact tracing were
included in the analysis.

With detailed surveillance data including information on
age distribution and clinical endpoint of each infection, we
first looked into the statistical property of proportion of
asymptomatic SARS-CoV-2 infection among different age
groups. In total, there were 2744 PCR-confirmed SARS-
CoV-2 infections with the highest number of 1040 in Shijiaz-
huang and the lowest number of 80 in Xingtai (electronic
supplementary material, table S4). Among all SARS-CoV-2
infections, there were 1964 symptomatic infections with a
median age of 50 and 780 asymptomatic infections with a
median age of 36, indicating younger age groups are at risk
of developing infectious but asymptomatic (figure 1a). The
age distribution of infections varied by location: the largest
proportion of positive cases was in individuals aged greater
than 60 in Shijiazhuang, Changchun, Tonghua and Suihua,
while the largest proportion was in age group of 20–29 for
Xingtai and in age group of 40–49 for Harbin (figure 2).

Across the six cities, the proportion of asymptomatic
infections declined with age (figure 1b; coefficient =−0.006

https://github.com/mjlaine/mcmcstat
http://qianxi.baidu.com/
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Figure 1. Pattern of SARS-CoV-2 infections in six cities in China before mass vaccination. (a) The total asymptomatic infection (light red) and symptomatic infection
(light blue) distribution from six cities (Shijiazhuang, Xingtai, Changchun, Tonghua, Harbin and Suihua) in age groups. The red dashed line represents the average of
age in asymptomatic SARS-CoV-2 infections. The blue dashed line represents the average of age in symptomatic SARS-CoV-2 infections. (b) The grey dots connected
by dashed line represent asymptomatic proportion from six Chinese cities in our study. A linear regression was built (asymptomatic proportion = intercept + coeffi-
cient × age). The grey line represents the linear regression using pooled asymptomatic proportion under each age group across cities with 95% CI in light grey
shadow (coefficient =−0.006, p < 0.01).
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(95% CI: −0.008 to −0.003) and p < 0.01 from linear
regression). To consider the heterogenicity in each city, a
meta-analysis was applied to the coefficients of age from
each city. The asymptomatic proportion was still signifi-
cantly associated with age (figure 3). The total or ‘crude’
asymptomatic proportion (i.e. the asymptomatic SARS-
CoV-2 infections divided by all the SARS-CoV-2 infections
for each city; see Methods) varied considerably, from 8%
in Tonghua to 18% in Shijiazhuang and 51% in Harbin
(white bars with black borders in figure 4b). The bias in
this asymptomatic proportion calculation should be very
small for the following reasons: (i) the populations were
tested multiple times during the COVID-19 flare-ups
and (ii) the identified cases were isolated and under
14-day health monitoring to create a definite clinical out-
come (asymptomatic or symptomatic) per individual. For
each age group, there was heterogeneity in the probability
of being asymptomatic across the cities (figure 1b). Identifi-
cation of the underlying biological mechanism of this
heterogeneity is beyond the scope of the current study, as
it mainly focuses on the overall, cross-city asymptomatic
proportion across all ages.
3.2. Age-dependent asymptomatic proportions and age
distribution of cases contribute to the total
asymptomatic proportion

To explore the mechanism underlying heterogeneity in over-
all, cross-city asymptomatic proportions, we developed an
age-stratified compartment model that incorporated age-
dependent asymptomatic proportions to reconstruct
observed epidemic trajectories, including both asympto-
matic and symptomatic cases (figure 4a; electronic
supplementary material, figure S1). We hypothesized that
cities report different total asymptomatic proportions of
SARS-CoV-2 infections because of the interplay between
the age-dependent asymptomatic proportion of cases and
the age distribution of infections. The proportion of asymp-
tomatic infections was assumed to decline with age, in
accordance to our findings and other reports [38]. The
model accurately described the daily numbers of asympto-
matic and symptomatic cases (electronic supplementary
material, figure S6), the case distribution by age
(figure 4b), the age-dependent proportion of asymptomatic
cases (electronic supplementary material, figure S7), and
the reported asymptomatic proportion of all cases (red bar
in figure 4c) across all the cities (note that these were not
involved in the loss function during fitting).

Based on the fit of the model, we next investigated the
effect of the age-dependent asymptomatic proportions on
total asymptomatic proportions. Our model suggested that
if the proportion of asymptomatic cases had been the
same across all age groups (i.e. age-independent), the total
proportion of asymptomatic cases in each city would have
been equal (yellow bar in figure 4c; electronic supplemen-
tary material, figure S8). However, this contradicted
the observations and illustrated that the asymptomatic
proportion depends on age, verifying that age-dependent
asymptomatic proportions contribute to the total
asymptomatic proportion.

Age distribution of cases might also have effects on the
proportion of asymptomatic cases, and it will be affected by
the interaction of initial infection seed among age groups,
age structure and contact patterns of a city. We tested differ-
ent combination of these factors by setting them to be either
age-specific or homogeneous in age, but it had little effect on
the total asymptomatic proportion (electronic supplementary
material, figure S9). Then we considered a more extreme
scenario where sustained transmission occurred only
among the young population (contacts assumed only to
take place among age groups (0–9) and (10–19)). In this
case, the total asymptomatic proportion was predicted to be
higher than observed (blue bar in figure 4b; electronic sup-
plementary material, figure S10), because of the shifted age
distribution of cases (electronic supplementary material,
figure S11a–d ). These results illustrate that transmission
within specific age groups, such as school transmission and
nursing home transmission, will greatly alter the total asymp-
tomatic proportion.
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3.3. The sensitivity analysis for the six cities in China
As the susceptibility to SARS-CoV-2 infection is expected to
increase with age [38], we also investigated the effect of sus-
ceptibility to infection on the total asymptomatic proportion.
By the simulation with homogeneous susceptibility among
different age groups, we found that the total asymptomatic
proportion was higher than the observations. This is due to
more cases happening among the younger groups (electronic
supplementary material, figure S11e,f ). We also replaced the
contact matrix with the contact matrices from Wuhan, Shang-
hai, Changsha and Shenzhen in China [32,39] and the total
asymptomatic proportion did not show dramatic changes
(electronic supplementary material, figure S12). The age-
dependent seed, age-structure and social contact matrices
were also evaluated. Multiple simulations were performed
by changing the age-dependent seed, age-structure and
social contact matrices of the population to be homogeneous
in age groups. The results showed that the predicted total
asymptomatic proportion may be relatively unchanged
among these combinations of models (electronic supplemen-
tary material, figures S13–S20).

To illustrate the robustness of our model, we tested the
effects of different initial values for parameters and the
estimations were robust to the different initial values (elec-
tronic supplementary material, table S7). Considering other
NPIs implemented, we used the inner-city mobility as a
proxy to test whether the fitting was improved or not by
assuming that the reduction in mobility has an effect on the
transmission probability. Specifically, transmission prob-
ability (β) is scaled by β*Mobility/max_Mobility, where
max_Mobility is the maximum value of mobility during the
outbreak. However, the model performance showed limited
improvement by adding human mobility information
(electronic supplementary material, table S8).
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Figure 4. The estimated SARS-CoV-2 cases distribution in age groups in six cities and the total asymptomatic proportions under different scenarios. (a) Model
diagram. The following compartments are considered: susceptible (Si), latent state (Li), pre-symptomatic (Lp, i), infectious asymptomatic (IA, i), infectious symptomatic
(IS, i) in age group i. λi is the force of infection in age group i; 1/σ is the latent period for asymptomatic and pre-symptomatic; pi is the proportion of infections that
manifest as asymptomatic cases in age group i; 1/σpre is the pre-symptomatic period for symptomatic; θ is the proportion of infection detected by contact tracing
and population-level testing (see Methods). Population-level testing is applied to the individuals in a city, i.e. the individuals in all the compartments. (b) Estimate
of the developed model to the total number of SARS-CoV-2 cases in age groups for six cities. The total number of SARS-CoV-2 cases reported (black box) and the
estimated total number of cases (light blue box) in each city and each age group. The grey line represents 95% CI. (c) The total asymptomatic proportions under
different scenarios. Red: simulated, based on the observed age-dependent asymptomatic proportions. Yellow: simulated, with age-independent asymptomatic pro-
portions. This proportion was calculated by the total asymptomatic cases divided by the total SARS-CoV-2 cases using the pooled data from six cities. Blue:
simulated, with contacts among the 0–9 and 10–19 age groups only. The grey bar represents the 95% CI for each simulation. White bars with black borders
represent the observed total asymptomatic proportion in each city.
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4. Discussion
Our study provides insight into the observed variability in the
proportion of asymptomatic SARS-CoV-2 infections. Based on
previous studies [6,26,41–43] and on data from the present
study before mass vaccination, the proportion of cases that
is asymptomatic declines with age. Together, local age-
dependent asymptomatic proportions along with the age dis-
tribution of cases lead to differences in the asymptomatic
proportions observed in different populations. Cities with
younger populations are more likely to have a high proportion
of asymptomatic infections and are at a high risk of COVID-19
endemic due to undetected asymptomatic transmission.
A great deal of concern has been directed toward the
asymptomatic proportion among infected vaccinated
people, which has been reported to be higher than that
among the unvaccinated. However, vaccines could not have
contributed to heterogeneity in the asymptomatic proportion
in the six cities of our study because the vaccine roll-out had
not started at the time of data collection. It is also unlikely
that exposure during the first COVID-19 wave contributed
to the heterogeneity of asymptomatic proportions in this
dataset because the total number of SARS-CoV-2 infections
during the first wave in 2020 among these six cities was
small: ranging from 7 in Tonghua to 198 in Harbin. Addition-
ally, a retrospective serological survey conducted in six
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provinces or municipalities (of Hubei province) from 10 April
2020 to 18 April 2020 suggested that less than 0.1% of the
population carried antibodies against SARS-CoV-2 [44].

There are a few limitations in our study. Due to the lack of
city-specific contact matrices, we used averaged contact
matrices from four other cities in China to represent contact
patterns in our research assuming similar living habits
across cities in China. The sensitivity analyses showed very
similar results using city-specific contact matrices. Although
some studies have reported that COVID-19 vaccines lower
the risk of developing symptomatic disease [45–47], we did
not consider this effect of vaccines. Few studies have reported
proportions of asymptomatic infections by age group or
otherwise following mass vaccination campaigns. In
addition, our conclusion about the heterogeneity of asympto-
matic proportion may persist once vaccinated, since the
effectiveness of vaccines also depends on the age. Though
active surveillance was conducted in six cities and most of
the infected individuals were detected by population-level
testing and contact tracing, there is heterogeneity in the pro-
portion of asymptomatic SARS-CoV-2 infection within each
age group across the cities. The underlying mechanism
could not be unraveled based on the current dataset,
although it may be caused by small sample sizes, other bio-
logical variations in the infected population, natural
variation in clinical manifestations for SARS-CoV-2 infections
or testing procedures in practice between the six cities
(despite standard protocols being used in all six cities).
More studies would be warranted to investigate this question
in the future.

In our study, most infections were identified in local com-
munities and isolation centres. Frequent, multiple rounds of
testing and contact tracing accelerated the early detection of
cases and even before they showed symptoms. Routine
PCR tests were also used for COVID-19 surveillance among
high-risk groups (e.g. health workers) and there were no
reported SARS-CoV-2 infections before the first documented
cases for each city of our study. By all these means, we were
able to identify asymptomatic cases. Nevertheless, the chance
of finding asymptomatic and symptomatic cases could have
been different. Even if this is true, it would not change our
conclusion that age is a key determinant of the asymptomatic
proportion. Analysing the SARS-CoV-2 infections from popu-
lation-level testing would be a way to demonstrate the
robustness of asymptomatic proportion calculation. However,
our dataset is not a line-list (a separate line for each case) and
how each individual infection was identified was unknown.
This is a limitation of data collection in our study.
In summary, our results give a comprehensive profile of
asymptomatic infection in six cities of China and explain fac-
tors that contribute to heterogeneity in the asymptomatic
proportion. Our study provides some insights for policy
related asymptomatic infection surveillance and control of
future resurgences by taking age structure into consideration,
especially in the era of vaccination and variants such as
the Omicron era.
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