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Abstract

As a core technology of Intelligent Transportation System,
traffic flow prediction has a wide range of applications. The
fundamental challenge in traffic flow prediction is to effec-
tively model the complex spatial-temporal dependencies in
traffic data. Spatial-temporal Graph Neural Network (GNN)
models have emerged as one of the most promising meth-
ods to solve this problem. However, GNN-based models have
three major limitations for traffic prediction: i) Most methods
model spatial dependencies in a static manner, which limits
the ability to learn dynamic urban traffic patterns; ii) Most
methods only consider short-range spatial information and
are unable to capture long-range spatial dependencies; iii)
These methods ignore the fact that the propagation of traf-
fic conditions between locations has a time delay in traffic
systems. To this end, we propose a novel Propagation Delay-
aware dynamic long-range transFormer, namely PDFormer,
for accurate traffic flow prediction. Specifically, we design a
spatial self-attention module to capture the dynamic spatial
dependencies. Then, two graph masking matrices are intro-
duced to highlight spatial dependencies from short- and long-
range views. Moreover, a traffic delay-aware feature transfor-
mation module is proposed to empower PDFormer with the
capability of explicitly modeling the time delay of spatial in-
formation propagation. Extensive experimental results on six
real-world public traffic datasets show that our method can
not only achieve state-of-the-art performance but also exhibit
competitive computational efficiency. Moreover, we visualize
the learned spatial-temporal attention map to make our model
highly interpretable.

Introduction
In recent years, rapid urbanization has posed great chal-
lenges to modern urban traffic management. As an indis-
pensable part of modern smart cities, intelligent transporta-
tion systems (ITS) (Yin et al. 2015) have been developed to
analyze, manage, and improve traffic conditions (e.g., reduc-
ing traffic congestion). As a core technology of ITS, traffic
flow prediction (Tedjopurnomo et al. 2022) has been widely
studied, aiming to predict the future flow of traffic systems
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Figure 1: The Findings about Traffic Prediction.

based on historical observations. It has been shown that ac-
curate traffic flow prediction can be useful for various traffic-
related applications (Wang et al. 2021), including route plan-
ning, vehicle dispatching, and congestion relief.

For traffic flow prediction, the fundamental challenge is
to effectively capture and model the complex and dynamic
spatial-temporal dependencies of traffic data (Yin et al.
2022). Many attempts have been made in the literature to de-
velop various deep learning models for this task. As early so-
lutions, convolutional neural networks (CNNs) were applied
to grid-based traffic data to capture spatial dependencies,
and recurrent neural networks (RNNs) were used to learn
temporal dynamics (Zhang, Zheng, and Qi 2017; Yao et al.
2018). Later, graph neural networks (GNNs) were shown to
be more suited to model the underlying graph structure of
traffic data (Li et al. 2018; Yu, Yin, and Zhu 2018), and thus
GNN-based methods have been widely explored in traffic
prediction (Wu et al. 2019; Song et al. 2020; Wu et al. 2020;
Bai et al. 2020; Chen et al. 2020; Ye et al. 2021; Li and Zhu
2021; Fang et al. 2021; Choi et al. 2022).

Despite the effectiveness, GNN-based models still have
three major limitations for traffic prediction. Firstly, the spa-
tial dependencies between locations in a traffic system are
highly dynamic instead of being static, which are time-
varying as they are affected by travel patterns and unex-
pected events. For example, as shown in Figure 1(b), the
correlation between nodes A and B becomes stronger during



the morning peak and weaker during other periods. While,
existing methods model spatial dependencies mainly in a
static manner (either predefined or self-learned), which lim-
its the ability to learn dynamic urban traffic patterns. Sec-
ondly, due to the functional division of the city, two distant
locations, such as nodes A and C in Figure 1(c), may reflect
similar traffic patterns, implying that the spatial dependen-
cies between locations are long-range. Existing methods are
often designed locally and unable to capture long-range de-
pendencies. For example, GNN-based models suffer from
over-smoothing, making it difficult to capture long-range
spatial dependencies. Thirdly, the effect of time delay might
occur in the spatial information propagation between loca-
tions in a traffic system. For example, when a traffic accident
occurs in one location, it will take several minutes (a delay)
to affect the traffic condition in neighboring locations, such
as nodes D and E in Figure 1(d). However, such a feature
has been ignored in the immediate message passing mecha-
nism of typical GNN-based models.

To address the above issues, in this paper, we propose a
Propagation Delay-aware dynamic long-range transFormer
model, namely PDFormer, for traffic flow prediction. As the
core technical contribution, we design a novel spatial self-
attention module to capture the dynamic spatial dependen-
cies. This module incorporates local geographic neighbor-
hood and global semantic neighborhood information into the
self-attention interaction via different graph masking meth-
ods, which can simultaneously capture the short- and long-
range spatial dependencies in traffic data. Based on this
module, we further design a delay-aware feature transforma-
tion module to integrate historical traffic patterns into spa-
tial self-attention and explicitly model the time delay of spa-
tial information propagation. Finally, we adopt the temporal
self-attention module to identify the dynamic temporal pat-
terns in traffic data. In summary, the main contributions of
this paper are summarized as follows:

• We propose the PDFormer model based on the spatial-
temporal self-attention mechanism for accurate traffic
flow prediction. Our approach fully addresses the issues
caused by the complex characteristics from traffic data,
namely dynamic, long-range, and time-delay.

• We design a spatial self-attention module that models
both local geographic neighborhood and global semantic
neighborhood via different graph masking methods and
further design a traffic delay-aware feature transforma-
tion module that can explicitly model the time delay in
spatial information propagation.

• We conduct both multi-step and single-step traffic flow
prediction experiments on six real-world public datasets.
The results show that our model significantly outper-
forms the state-of-the-art models and exhibits compet-
itive computational efficiency. Moreover, the visualiza-
tion experiments show that our approach is highly inter-
pretable via the learned spatial-temporal attention.

Preliminaries
In this section, we introduce some notations and formalize
the traffic flow prediction problem.

Figure 2: The Overall Framework of PDFormer.

Notations and Definitions
Definition 1 (Road Network). We represent the Road Net-
work as a graph G = (V, E ,A), where V = {v1, · · · , vN}
is a set of N nodes (|V | = N), E ⊆ V × V is a set of
edges, and A is the adjacency matrix of network G. Here, N
denotes the number of nodes in the graph.
Definition 2 (Traffic Flow Tensor). We use Xt ∈ RN×C

to denote the traffic flow at time t of N nodes in the road
network, where C is the dimension of the traffic flow. For
example, C = 2 when the data includes inflow and outflow.
We use X = (X1,X2, · · · ,XT ) ∈ RT×N×C to denote the
traffic flow tensor of all nodes at total T time slices.

Problem Formalization
Traffic flow prediction aims to predict the traffic flow of a
traffic system in the future time given the historical observa-
tions. Formally, given the traffic flow tensor X observed on
a traffic system, our goal is to learn a mapping function f
from the previous T steps’ flow observation value to predict
future T ′ steps’ traffic flow,

[X(t−T+1), · · · ,Xt;G]
f−→ [X(t+1), · · · ,X(t+T ′)]. (1)

Methods
Figure 2 shows the framework of our proposed PDFormer,
which consists of a data embedding layer, stacked L spatial-
temporal encoder layers, and an output layer. We describe
each module below in detail.

Data Embedding Layer
The data embedding layer converts the input into a high-
dimensional representation. First, the raw input X is trans-
formed into X data ∈ RT×N×d through a fully connected
layer, d is the embedding dimension. Then, we further de-
sign a spatial-temporal embedding mechanism to incorpo-
rate the necessary knowledge into the model, including



the spatial graph Laplacian embedding to encode the road
network structure and the temporal periodic embedding to
model the periodicity of traffic flow.

To represent the structure of the road network, we use
the graph Laplacian eigenvectors (Belkin and Niyogi 2003),
which better describe the distance between nodes on the
graph. First, we obtain the normalized Laplacian matrix by
∆ = I−D−1/2AD−1/2, where A is the adjacency matrix,
D is the degree matrix, and I is the identity matrix. Then,
we perform the eigenvalue decomposition ∆ = U⊤ΛU
to obtain the eigenvalue matrix Λ and the eigenvector ma-
trix U . We use a linear projection on the k smallest non-
trivial eigenvectors to generate the spatial graph Laplacian
embedding Xspe ∈ RN×d. Laplacian eigenvectors embed
the graph in Euclidean space and preserve the global graph
structure information (Dwivedi et al. 2020).

In addition, urban traffic flow, influenced by people’s
travel patterns and lifestyle, has an obvious periodicity, such
as morning and evening peak hours. Therefore, we introduce
two embeddings to cover the weekly and daily periodicity,
respectively, denoted as tw(t), td(t) ∈ Rd. Here w(t) and
d(t) are functions that transform time t into the week index
(1 to 7) and minute index (1 to 1440), respectively. The tem-
poral periodic embeddings Xw,Xd ∈ RT×d are obtained
by concatenating the embeddings of all T time slices.

Following the original Transformer (Vaswani et al. 2017),
we also employ a temporal position encoding Xtpe ∈ RT×d

to introduce position information of the input sequence.
Finally, we get the output of the data embedding layer by

simply summing the above embedding vectors as:

X emb = X data +Xspe +Xw +Xd +Xtpe. (2)

X emb will be fed into the following spatial-temporal en-
coders, and we use X to replace X emb for convenience.

Spatial-Temporal Encoder Layer
We design a spatial-temporal encoder layer based on the
self-attention mechanism to model the complex and dy-
namic spatial-temporal dependencies. The core of the en-
coder layer includes three components. The first is a spa-
tial self-attention module consisting of a geographic spatial
self-attention module and a semantic spatial self-attention
module to capture the short-range and long-range dynamic
spatial dependencies simultaneously. The second is a delay-
aware feature transformation module that extends the geo-
graphic spatial self-attention module to explicitly model the
time delay in spatial information propagation. Moreover, the
third is a temporal self-attention module that captures the
dynamic and long-range temporal patterns.

To formulate self-attention operations, we use the follow-
ing slice notation. For a tensor X ∈ RT×N×D, the t slice is
the matrix Xt:: ∈ RN×D and the n slice is X:n: ∈ RT×D.

Spatial Self-Attention (SSA). We design a Spatial Self-
Attention module to capture dynamic spatial dependencies
in traffic data. Formally, at time t, we first obtain the query,
key, and value matrices of self-attention operations as:

Q
(S)
t = Xt::W

S
Q ,K

(S)
t = Xt::W

S
K ,V

(S)
t = Xt::W

S
V , (3)

where W S
Q ,W S

K ,W S
V ∈ Rd×d′

are learnable parameters
and d′ is the dimension of the query, key, and value matrix
in this work. Then, we apply self-attention operations in the
spatial dimension to model the interactions between nodes
and obtain the spatial dependencies (attention scores) among
all nodes at time t as:

A
(S)
t =

(Q
(S)
t )(K

(S)
t )⊤√

d′
. (4)

It can be seen that the spatial dependencies A(S)
t ∈ RN×N

between nodes are different in different time slices, i.e., dy-
namic. Thus, the SSA module can be adapted to capture the
dynamic spatial dependencies. Finally, we can obtain the
output of the spatial self-attention module by multiplying
the attention scores with the value matrix as:

SSA(Q
(S)
t ,K

(S)
t ,V

(S)
t ) = softmax(A

(S)
t )V

(S)
t . (5)

For the simple spatial self-attention in Eq. (5), each node
interacts with all nodes, equivalent to treating the spatial
graph as a fully connected graph. However, only the interac-
tion between a few node pairs is essential, including nearby
node pairs and node pairs that are far away but have similar
functions. Therefore, we introduce two graph masking ma-
trices Mgeo and Msem to simultaneously capture the short-
range and long-range spatial dependencies in traffic data.

From the short-range view, we define the binary geo-
graphic masking matrix Mgeo, and only if the distance (i.e.,
hops in the graph) between two nodes is less than a threshold
λ, the weight is 1, and 0 otherwise. In this way, we can mask
the attention of node pairs far away from each other. From
the long-range view, we compute the similarity of the his-
torical traffic flow between nodes using the Dynamic Time
Warping (DTW) (Berndt and Clifford 1994) algorithm. We
select the K nodes with the highest similarity for each node
as its semantic neighbors. Then, we construct the binary se-
mantic masking matrix Msem by setting the weight between
the current node and its semantic neighbors to 1 and 0 other-
wise. In this way, we can find distant node pairs that exhibit
similar traffic patterns due to similar urban functions.

Based on the two graph masking matrices, we further de-
sign two spatial self-attention modules, namely, Geographic
Spatial Self-Attention (GeoSSA) and Semantic Spatial Self-
Attention (SemSSA), which can be defined as:

GeoSSA(Q
(S)
t ,K

(S)
t ,V

(S)
t ) = softmax(A

(S)
t ⊙Mgeo)V

(S)
t ,

SemSSA(Q
(S)
t ,K

(S)
t ,V

(S)
t ) = softmax(A

(S)
t ⊙Msem)V

(S)
t ,

(6)

where ⊙ indicates the Hadamard product. In this way, the
spatial self-attention module simultaneously incorporates
short-range geographic neighborhood and long-range se-
mantic neighborhood information.

Delay-aware Feature Transformation (DFT). There ex-
ists a propagation delay in real-world traffic conditions. For
example, when a traffic accident occurs in one region, it may
take several minutes to affect traffic conditions in neighbor-
ing regions. Therefore, we propose a traffic delay-aware fea-
ture transformation module that captures the propagation de-
lay from the short-term historical traffic flow of each node.



Figure 3: Delay-aware Feature Transformation.

Then, this module incorporates delay information into the
key matrix of the geographic spatial self-attention module to
explicitly model the time delay in spatial information propa-
gation. Since traffic data can have multiple dimensions, such
as inflow and outflow, here we only present the calculation
process of this module using one dimension as an example.

First, we identify a group of representative short-term
traffic patterns from historical traffic data. Specifically, we
slice the historical traffic data with a sliding window of size
S and obtain a set of traffic flow series. Then, we perform k-
Shape clustering algorithm (Paparrizos and Gravano 2016)
on these traffic flow series. The k-Shape algorithm is a time
series clustering method that preserves the shape of the time
series and is invariant to scaling and shifting. We use the
centroid pi of each cluster to represent that cluster, where
pi is also a time series of length S. Then, we use the set
P = {pi|i ∈ [1, · · · , Np]} to represent the clustering re-
sults, where Np is the total number of clusters. We can re-
gard P as a set of short-term traffic patterns.

Similar traffic patterns may have similar effects on neigh-
borhood traffic conditions, especially abnormal traffic pat-
terns such as congestion. Therefore, we compare the histor-
ical traffic flow series for each node with the extracted traf-
fic pattern set P to fuse the information of similar patterns
into the historical flow series representation of each node as
shown in Figure 3. Specifically, given the S-step historical
traffic flow series of node n from time slice (t−S +1) to t,
denoted as x(t−S+1:t),n, we first use the embedding matrix
W u to obtain a high-dimensional representation ut,n as:

ut,n = x(t−S+1:t),nW
u. (7)

Then, we use another embedding matrix Wm to convert
each traffic flow series in the traffic pattern set P into a mem-
ory vector as:

mi = piW
m. (8)

We compare the historical traffic flow representation ut,n of
node n with the traffic pattern memory vector mi and obtain
the similarity vector as:

wi = softmax(u⊤
t,nmi). (9)

Then, we perform a weighted sum of the traffic pattern set P
according to the similarity vector w to obtain the integrated
historical series representation rt,n as:

rt,n =

Np∑
i=1

wi(piW
c), (10)

where W c is a learnable parameter matrix. The integrated
historical series representation rt,n contains the historical
traffic flow information from time slice (t − S + 1) to t of
node n. Finally, we use the integrated representation of N
nodes, denoted as Rt, to update K

(S)
t in Eq. (4) as:

K̃
(S)
t = K

(S)
t +Rt, (11)

where Rt ∈ RN×d′
is obtained by concatenating all the in-

tegrated representation rt,n of N nodes and d′ is the dimen-
sion of the key matrix in this work.

In this way, the new key matrix K̃
(S)
t at time slice t in-

tegrates the historical traffic flow information of all nodes
from time slice (t− S + 1) to t. When computing the prod-
uct of the query matrix and the new key matrix to obtain the
spatial dependencies A(S)

t at time slice t in Eq. (4), the query
matrix can take into account the historical traffic conditions
of other nodes. This process explicitly models the time delay
in spatial information propagation. We do not add this mod-
ule to the semantic spatial self-attention module because the
short-term traffic flow of a distant node has little impact on
the current node.

Temporal Self-Attention (TSA). There are dependencies
(e.g., periodic, trending) between traffic conditions in differ-
ent time slices, and the dependencies vary in different situa-
tions. Thus, we employ a Temporal Self-Attention module to
discover the dynamic temporal patterns. Formally, for node
n, we first obtain the query, key, and value matrices as:

Q(T )
n = X:n:W

T
Q ,K(T )

n = X:n:W
T
K ,V (T )

n = X:n:W
T
V ,

(12)
where W T

Q ,W T
K ,W T

V ∈ Rd×d′
are learnable parameters.

Then, we apply self-attention operations in the temporal di-
mension and obtain the temporal dependencies between all
time slices for node n as:

A(T )
n =

(Q
(T )
n )(K

(T )
n ))⊤√

d′
. (13)

It can be seen that the temporal self-attention can discover
the dynamic temporal patterns in traffic data that are differ-
ent for different nodes. Moreover, the temporal self-attention
has a global receptive to model the long-range temporal de-
pendencies among all time slices. Finally, we can obtain the
output of the temporal self-attention module as:

TSA(Q(T )
n ,K(T )

n ,V (T )
n ) = softmax(A(T )

n )V (T )
n . (14)

Heterogeneous Attention Fusion. After defining the three
types of attention mechanisms, we fuse heterogeneous atten-
tion into a multi-head self-attention block to reduce the com-
putational complexity of the model. Specifically, the atten-
tion heads include three types, i.e., geographic (GeoSAH),
semantic (SemSAH), and temporal (TAH) heads, corre-
sponding to the three types of attention mechanisms, respec-
tively. The results of these heads are concatenated and pro-
jected to obtain the outputs, allowing the model to integrate
spatial and temporal information simultaneously. Formally,
the spatial-temporal self-attention block is defined as:

STAttn = ⊕(Zgeo
1···hgeo

,Zsem
1···hsem

,Zt
1···ht

)WO, (15)



Datasets #Nodes #Interval Time range
PeMS04 307 5min 01/01/2018-02/28/2018
PeMS07 883 5min 05/01/2017-08/31/2017
PeMS08 170 5min 07/01/2016-08/31-2016
NYTaxi 75(15x5) 30min 01/01/2014-12/31/2014
CHBike 270(15x18) 30min 07/01/2020-09/30/2020
TDrive 1024(32x32) 60min 02/01/2015-06/30/2015

Table 1: Data Description.

where ⊕ represents concatenation, Zgeo,Zsem,Zt are out-
put concatenations and hgeo, hsem, ht are the numbers of at-
tention heads of GeoSSA, SemSSA and TSA, respectively,
and WO ∈ Rd×d is a learnable projection matrix. In this
work, we set the dimension d′ = d/(hgeo + hsem + ht).

In addition, we employ a position-wise fully connected
feed-forward network on the output of the multi-head self-
attention block to get the outputs X o ∈ RT×N×d. We also
use layer normalization and residual connection here follow-
ing the original Transformer (Vaswani et al. 2017).

Output Layer
We use a skip connection, consisting of 1 × 1 convolutions,
after each spatial-temporal encoder layer to convert the out-
puts X o into a skip dimension X sk ∈ RT×N×dsk . Here dsk
is the skip dimension. Then, we obtain the final hidden state
X hid ∈ RT×N×dsk by summing the outputs of each skip
connection layer. To make a multi-step prediction, we di-
rectly use the output layer to transform the final hidden state
X hid to the desired dimension as:

X̂ = Conv2(Conv1(X hid)), (16)

where X̂ ∈ RT ′×N×C is T ′ steps’ prediction results, Conv1
and Conv2 are 1 × 1 convolutions. Here we choose the di-
rect way instead of the recursive manner for multi-step pre-
diction considering cumulative errors and model efficiency.

Experiments
Datasets
We verify the performance of PDFormer on six real-world
public traffic datasets, including three graph-based highway
traffic datasets, i.e., PeMS04, PeMS07, PeMS08 (Song et al.
2020), and three grid-based citywide traffic datasets, i.e.,
NYTaxi (Liu et al. 2021a), CHBike (Wang et al. 2021),
TDrive (Pan et al. 2019). The graph-based datasets contain
only the traffic flow data, and the grid-based datasets contain
inflow and outflow data. Details are given in Table 1.

Baselines
We compare PDFormer with the following 9 baselines be-
longing to two classes. (1) Graph Neural Network-based
Models: We choose DCRNN (Li et al. 2018), STGCN (Yu,
Yin, and Zhu 2018), GWNET (Wu et al. 2019), MT-
GNN (Wu et al. 2020), STFGNN (Li and Zhu 2021) and
STGNCDE (Choi et al. 2022). (2) Self-attention-based Mod-
els: We choose STTN (Xu et al. 2020), GMAN (Zheng et al.
2020) and ASTGNN (Guo et al. 2021).

Experimental Settings

Dataset Processing. To be consistent with most modern
methods, we split the three graph-based datasets into train-
ing, validation, and test sets in a 6:2:2 ratio. In addition, we
use the past hour (12 steps) data to predict the traffic flow for
the next hour (12 steps), i.e., a multi-step prediction. For the
grid-based datasets, the split ratio is 7:1:2, and we use the
traffic inflow and outflow of the past six steps to predict the
next single-step traffic inflow and outflow. Before training,
we use Z-score normalization on all datasets to standardize
the inputs.

Model Settings. All experiments are conducted on a ma-
chine with the NVIDIA GeForce 3090 GPU and 128GB
memory. We implement PDFormer 1 with Ubuntu 18.04, Py-
Torch 1.10.1, and Python 3.9.7. The hidden dimension d is
searched over {16, 32, 64, 128} and the depth of encoder
layers L is searched over {2, 4, 6, 8}. The optimal model is
determined based on the performance in the validation set.
We train our model using AdamW optimizer (Loshchilov
and Hutter 2017) with a learning rate of 0.001. The batch
size is 16, and the training epoch is 200.

Evaluation Metrics. We use three metrics in the experi-
ments: (1) Mean Absolute Error (MAE), (2) Mean Abso-
lute Percentage Error (MAPE), and (3) Root Mean Squared
Error (RMSE). Missing values are excluded when calculat-
ing these metrics. When we test the models on grid-based
datasets, we filter the samples with flow values below 10,
consistent with (Yao et al. 2018). Since the flow of CHBike
is lower than others, the filter threshold is 5. Besides, we
take the average value of inflow and outflow evaluation met-
rics as the final result for grid-based datasets. We repeated
all experiments ten times and reported the average results.

Performance Comparison
The comparison results with baselines on graph-based and
grid-based datasets are shown in Table 2. The bold results
are the best, and the underlined results are the second best.
Based on this table, we can make the following observa-
tions. (1) Our PDFormer significantly outperforms all base-
lines in terms of all metrics over all datasets according to
Student’s t-test at level 0.01. Compared to the second best
method, PDFormer achieves an average improvement of
4.58%, 5.00%, 4.79% for MAE/MAPE/RMSE. (2) Among
the GNN-based models, MTGNN and STGNCDE lead to
competitive performance. Compared to these GNN-based
models, whose message passing is immediate, PDFormer
achieves better performance because it considers the time
delay in spatial information propagation. (3) As for the
self-attention-based models, ASTGNN is the best baseline,
which combines GCN and the self-attention module to ag-
gregate neighbor information. Compared with ASTGNN,
PDFormer simultaneously captures short- and long-range
spatial dependencies via two masking matrices and achieves
good performance.

1https://github.com/BUAABIGSCity/PDFormer



Models DCRNN STGCN GWNET MTGNN STFGNN STGNCDE STTN GMAN ASTGNN PDFormer
Pe

M
S0

4 MAE 22.737 21.758 19.358 19.076 19.830 19.211 19.478 19.139 18.601 18.321
MAPE 14.751 13.874 13.301 12.961 13.021 12.772 13.631 13.192 12.630 12.103
RMSE 36.575 34.769 31.719 31.564 31.870 31.088 31.910 31.601 31.028 29.965

Pe
M

S0
7 MAE 23.634 22.898 21.221 20.824 22.072 20.620 21.344 20.967 20.616 19.832

MAPE 12.281 11.983 9.075 9.032 9.212 8.864 9.932 9.052 8.861 8.529
RMSE 36.514 35.440 34.117 34.087 35.805 34.036 34.588 34.097 34.017 32.870

Pe
M

S0
8 MAE 18.185 17.838 15.063 15.396 16.636 15.455 15.482 15.307 14.974 13.583

MAPE 11.235 11.211 9.514 10.170 10.547 9.921 10.341 10.134 9.489 9.046
RMSE 28.176 27.122 24.855 24.934 26.206 24.813 24.965 24.915 24.710 23.505

N
Y

Ta
xi MAE 13.625 13.462 13.296 13.233 14.257 13.279 13.366 13.270 12.978 12.364

MAPE 14.349 14.156 13.941 13.818 14.727 13.926 13.984 13.893 13.647 12.781
RMSE 21.971 21.911 21.708 21.613 23.869 21.675 21.834 21.661 21.189 20.176

T
D

riv
e MAE 21.938 21.143 19.553 18.955 22.510 19.289 20.513 19.104 18.794 17.788

MAPE 17.566 17.261 16.560 16.409 18.540 16.504 16.659 16.449 15.843 14.680
RMSE 38.411 37.836 36.179 35.689 40.554 36.118 37.143 36.053 33.934 31.553

C
H

B
ik

e MAE 4.224 4.180 4.126 4.099 4.249 4.109 4.139 4.102 4.024 3.893
MAPE 31.043 31.003 30.922 30.855 32.272 30.873 30.956 30.906 30.874 30.064
RMSE 5.908 5.866 5.806 5.738 5.904 5.796 5.827 5.792 5.713 5.480

Table 2: Performance on Graph-based and Grid-based Datasets. (MAPE is in %.)

Ablation Study
To further investigate the effectiveness of different parts in
PDFormer, we compare PDFormer with the following vari-
ants. (1) w/ GCN: this variant replaces spatial self-attention
(SSA) with Graph Convolutional Network (GCN) (Kipf
and Welling 2016), which cannot capture the dynamic and
long-range spatial dependencies. (2) w/o Mask: this vari-
ant removes two masking matrices Mgeo and Msem, which
means each node attends to all nodes. (3) w/o GeoSAH: this
variant removes GeoSAH. (4) w/o SemSAH: this variant re-
moves SemSAH. (5) w/o Delay: this variant removes the
delay-aware feature transformation module, which accounts
for the spatial information propagation delay.

Figure 4 shows the comparison of these variants on the
PeMS04 and NYTaxi datasets. For the NYTaxi dataset, only
the results for inflow are reported since the results for out-
flow are similar. Based on the results, we can conclude the
following: (1) The results show the superiority of SSA over
GCN in capturing dynamic and long-range spatial depen-
dencies. (2) PDFormer leads to a large performance im-
provement over w/o Mask, highlighting the value of using
the mask matrices to identify the significant node pairs. In
addition, w/o SemSAH and w/o GeoSAH perform worse than
PDFormer, indicating that both local and global spatial de-
pendencies are significant for traffic prediction. (3) w/o De-
lay performs worse than PDFormer because this variant ig-
nores the spatial propagation delay between nodes but con-
siders the spatial message passing as immediate.

Case Study
In this section, we analyze the dynamic spatial-temporal at-
tention weight map learned by the spatial-temporal encoder
of PDFormer to improve its interpretability and demonstrate
the effectiveness of focusing on short- and long-range spatial
dependencies simultaneously.
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Figure 4: Ablation Study on PeMS04 and NYTaxi inflow.

We compare and visualize the attention map in two cases,
i.e., with or without the two spatial mask matrices Mgeo and
Msem. Here, for simplicity, we merge the attention map of
GeoSAH and SemSAH. As shown in Figure 5(a),(d), with-
out the mask matrices, the model focuses on the major ur-
ban ring roads (or highways) with high traffic volume, or
the attention distribution is diffuse, and almost the entire city
shares the model’s attention. However, low-traffic locations
should focus on locations with similar patterns rather than
hot locations. Moreover, locations that are too far away have
little impact on the current location. The model performance
will weaken if it focuses on all locations diffusely. Instead,
when Mgeo and Msem are introduced, attention focuses on
surrounding locations and distant similar-pattern locations
as shown in Figure 5(b),(e).

Let us take Region 592 in Figure 5(b) as an example.
Highway S12 passes through this region, so the traffic vol-
ume is always high. In addition to the regions located up-
stream and downstream of the highway, region 592 also fo-
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Figure 5: Case Study of Attention Map.

cuses on regions 648 and 753. From Figure 5(c), we can see
that these two regions have similar historical traffic volumes
as 592. Besides, from Figure 5(h)(i), these two regions are
located near the Guomao Interchange and Beijing Second
Ring Road, respectively, which are similar to 592 in their
cities function as major traffic hubs. In another case, region
252 has low traffic volume, but we can observe similar pat-
terns from regions 370, 403 and 842 that region 252 focused
on, i.e., similar functional and historical traffic variations.

This case study shows that after introducing the spatial
mask matrices, PDFormer not only considers the short-range
spatial dependencies but also identifies the global functional
area to capture the long-range spatial dependencies. The
above ablation experiments also quantitatively show that the
model performance drops sharply after removing the mask
matrices, which supports the idea presented here.

Model Efficiency Study
Due to the better performance of the attention-based mod-
els, we compare the computational cost of PDFormer with
other self-attention-based baselines on the PeMS04 and
the NYTaxi datasets. Table 3 reports the average train-
ing and inference time per epoch. We find that PDFormer
achieves competitive computational efficiency in both short-
and long-term traffic prediction. Compared to the best per-
forming baseline ASTGNN on PeMS04, PDFormer reduces
the training and inference time of over 35% and 80%, re-
spectively. GMAN and ASTGNN retain a time-consuming
encoder-decoder structure, which is replaced by a forward
procedure in STTN and PDFormer.

Related Work
Deep Learning for Traffic Prediction
In recent years, more and more researchers have employed
deep learning models to solve traffic prediction problems.
Early on, convolutional neural networks (CNNs) were ap-
plied to grid-based traffic data to capture spatial dependen-
cies in the data (Wang et al. 2016; Zhang, Zheng, and Qi
2017; Yao et al. 2018; Lin et al. 2020a). Later, thanks to

Dataset PeMS04 NYTaxi
Model Train Infer Train Infer
GMAN 501.58 38.84 130.67 4.26

ASTGNN 208.72 62.02 119.09 4.60
PDFormer 133.87 8.12 85.31 2.73

STTN 100.40 12.60 68.04 2.65

Table 3: Training and inference time per epoch comparison
between self-attention-based models. (Unit: seconds)

the powerful ability to model graph data, graph neural net-
works (GNNs) were widely used for traffic prediction (Li
et al. 2018; Yu, Yin, and Zhu 2018; Wu et al. 2019; Ji et al.
2020; Chen et al. 2020; Ye et al. 2021; Wu et al. 2020; Zhang
et al. 2021; Song et al. 2020; Li and Zhu 2021; Oreshkin
et al. 2021; Han et al. 2021; Ji et al. 2022; Fang et al. 2021;
Choi et al. 2022; Liu et al. 2022). Recently, the attention
mechanism has become increasingly popular due to its ef-
fectiveness in modeling the dynamic dependencies in traffic
data (Guo et al. 2019; Wang et al. 2020; Lin et al. 2020b; Yan
and Ma 2021; Ye et al. 2022). Unlike these work, our pro-
posed PDFormer not only considers the dynamic and long-
range spatial dependencies through a self-attention mecha-
nism but also incorporates the time delay in spatial propaga-
tion through a delay-aware feature transformation layer.

Transformer
Transformer (Vaswani et al. 2017) is a network architecture
based entirely on self-attention mechanisms. Transformer
has been proven effective in multiple natural language pro-
cessing (NLP) tasks. In addition, large-scale Transformer-
based pre-trained models such as BERT (Devlin et al. 2018)
have achieved great success in the NLP community. Re-
cently, Vision Transformers have attracted the attention of
researchers, and many variants have shown promising re-
sults on computer vision tasks (Liu et al. 2021b). In addi-
tion, the Transformer architecture performs well in repre-
sentation learning, which has been demonstrated in recent
studies (Dwivedi and Bresson 2020; Ren et al. 2021; Ren,
Wang, and Zhao 2022; Jiang et al. 2023).

Conclusion
In this work, we proposed a novel PDFormer model with
spatial-temporal self-attention for traffic flow prediction.
Specifically, we developed a spatial self-attention module
that captures the dynamic and long-range spatial dependen-
cies and a temporal self-attention module that discovers the
dynamic temporal patterns in the traffic data. We further de-
signed a delay-aware feature transformation module to ex-
plicitly model the time delay in spatial information prop-
agation. We conducted extensive experiments on six real-
world datasets to demonstrate the superiority of our pro-
posed model and visualized the learned attention map to
make the model interpretable. As future work, we will apply
PDFormer to other spatial-temporal prediction tasks, such as
wind power forecasting (Jiang, Han, and Wang 2023). In ad-
dition, we will explore the pre-training techniques in traffic
prediction to solve the problem of insufficient data.
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