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Background

Applications of 5G

5G networks are recognized as providing solutions for all
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applications, including networked vehicles, the internet of .
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things, augmented reality, virtual reality, super-high quality ::::3 0 o) HI s i
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online videos, and many more customized services for
subscribers.
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The main problem is How to deploy 5G base stations g ¢




Background

The deployment of base stations traditionally relies on the experiences of experts. Communication

engineers manually plan out the sites of base stations.

» Such a manual approach is limited by expensive labor costs and cannot find optimal solutions
for large-scale areas, such as city-scale.

» Merely relying on human experiences can easily result in a high mismatch between human

traffic demand and deployed base stations.

29 29
o s
2 05 2 0.5 Missmatch!
™ 28.5 © 28.5
-l -

28 0 28 0

1155 116 116.5 1155 116 116.5
Longitude Longitude

base station density traffic volume



Background

Motivation

» Deploying base stations according to the estimated traffic load is a more practical approach.

» Generating or estimating cellular traffic load for newly deployed 5G base stations is challenging due to the

lack of historical data.

Challenges

» How to build a bridge between the source city and the target city b

0.00

for cellular traffic generation.

» How to extract and represent relations between base stations.
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» How to transfer temporal patterns of base stations’ traffic.
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Preliminaries %

Urban Knowledge Graph

Input
The urban knowledge graph takes urban content, such as base = ( )
stations, point of interests (POIs), and regions, as entities where = ( )
spatial and semantic dependencies are modeled as relations. = 1 =1
Probleam Defination Q
Given the historical traffic dataset of the source city and the [ ADAPTIVE ]

urban knowledge graphs of the source city and the target city,

our goal 1s to generate city scale traffic for the base stations Q

located in the target city. Output
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Framework Overview

(1) Knowledge graph embedding

(2) Learning base station representations. GCN +

(3) Aligning base station representations. 2 types of Loss

Loss

and

(4) Cellular traffic generation: a multi-generator structure
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Representations of base
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Training model

Cellular traffic generation model
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Urban knowledge graph
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Knowledge Graph Embedding

relatedBrand brand2Cate
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One base station is connected to other entities with four
relations.

» One base station is located at a region.

» One base station belongs to a business area.

» A POl is served by a base station.

» A base station borders another base station.
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Learning Base Station Representations

%

( GCN Laye \ f GCN Laye \

> concat MLP POI Distribution
o G 'y (PD)
= | Embeddings
- / - J Lpor = KL(PD, PD)
> Top € closest base stations Two-layer GCN model As for the source city, its base station
- _1 _1 . : : ..

» The edge weights HI(SIS) = oD, ApsDy w® Hz(sfs 1) represen tations are obtained by training

Aps(i, j) = 1/Dist(i, j) Ay i) GCN and MLP models with the POI
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Aligning Base Station Representations

exp(sim(z1CT, 2ps )

(a) Residential area (b) Transport area
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Source City Base Station Lpartern = — p (1 - M(BST¢T)) log(M(BSTCT))
y :

Time Series of Source City Representation Cluster

As for the target city, its base station representations are then obtained by training

GCN and MLP models with both the POI similarity loss and the pattern matching loss



Cellular Traffic Generation

Inputs for generation Multi-generator model
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» We leverage a multi-generator structure to capture the daily pattern and weekly pattern of the
traffic time series.

» We train the feature-enhanced generative adversarial network with Wasserstein loss based on
the historical traffic data and representations of base stations in the source city.

» By feeding the noise and the target city’s representations into the trained model, we can obtain

the generated traffic data for the target city.



_ Experimens R

Datasets

Beijing, Shanghai, Nanjing

Baselines

» TransGAN: A transformer-based GAN that combines a multi-scale discriminator to
concurrently capture low-level textures and semantic contexts with a generator
using transformer blocks that gradually enhance feature resolution.

» LSTM-based GAN: Two LSTMs are used as the generator and discriminator in
constructing the GAN.

» TCN-based GAN: A GAN using temporal convolutional networks (TCNs) as the

generator and discriminator for cellular traffic generation.



Experiments

Overall Performance Evaluation (Shanghai -> Beijing, Nanjing)

Cities ‘ Shanghai (Source) — Nanjing (Target) | Shanghai (Source) — Beijing (Target)

Traffic Volume First-order Daily Periodic Traffic Volume First-order Daily Periodic
Methods . 2

Difference Component Difference Component
‘ JSD A JSD A RMSE A | JSD A JSD A RMSE A

Trans 0.5378 47.79% 0.1656 160.38%  0.0587 12.67% 0.5869 104.49%  0.1857 166.05%  0.1021 63.1%
Trans+ PD 0.5101 40.18% 0.1666 161.95%  0.0594 14.01% 0.5743 100.1% 0.1851 165.19%  0.1031 64.7%
Trans+ Egs 0.5307 45.84% 0.1564 145.91%  0.0589 13.05% 0.5883 104.98%  0.1749 150.57%  0.1024 63.58%
Trans+ Zgs 0.5140 41.25% 0.1540 142.14%  0.0566 8.64% 0.5759 100.66%  0.1575 125.64%  0.1023 63.42%
RNN 0.7294 100.44%  0.0863 35.69% 0.0567 8.83% 0.7103 147.49%  0.1846 164.47%  0.1054 68.37%
RNN+ PD 0.5914 62.52% 0.1328 108.81%  0.0638 22.46% 0.6613 130.42%  0.0944 42.41% 0.1079 72.36%
RNN+ Egs 0.6226 71.09% 0.0931 46.38% 0.0523 0.38% 0.7026 144.81% 0.0766 9.74% 0.1010 61.34%
RNN+ Zps 0.5913 62.49% 0.1328 108.81%  0.0638 22.46% 0.6613 130.42%  0.0944 35.24% 0.1078 72.2%
TCN 0.7626 109.56%  0.1426 124.21%  0.1289 147.41% | 0.5774 101.18%  0.1853 165.47%  0.1076 71.88%
TCN+ PD 0.5945 63.37% 0.1328 108.81%  0.1036 98.85% 0.4259 48.4% 0.0995 42.55% 0.1016 62.3%
TCN+ Egs 0.7814 68.73% 0.1085 70.6% 0.0927 77.93% 0.8513 196.62%  0.0858 22.92% 0.0965 54.15%
[CN+ Zrg 0.5674 20.92% 0,0963 21.42% 00847 62.57% 0.4133 44 01% 0.0844 20.92% 0.0841 3430%
ADAPTIVE 0.7173 97.11% 0.1047 64.62% 0.0516 -0.96% 0.5703 98.71% 0.1454 108.31%  0.0890 42.17%
ADAPTIVE+ PD | 0.5853 60.84% 0.0998 56.92% 0.0540 3.65% 0.5045 75.78% 0.0679 -2.72% 0.0698 11.5%
ADAPTIVE+ Egs | 0.4985 36.99% 0.0972 52.83% 0.0470 -9.79% 0.3444 20.0% 0.1782 155.3% 0.0712 13.74%
ADAPTIVE+ Zgs | 0.3639 0 0.0636 0 0.0521 0 0.2870 0 0.0698 0 0.0626 0




Experiments

Case Study

» The temporal patterns of the traffic time series generated by ADAPTIVE are consistent with real traffic.

» This verifies that the traffic temporal patterns are successfully transferred from the source city to the
target city across different functional regions, demonstrating the effectiveness of the key designs of the

knowledge graph module and attention-driven matching score.
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Experiments

The traning data size
the model performance improves with the increase

in the number of base stations in the training set.

note: 40%, 80%.

Scale of urban knowledge graphs

» changes with the scale of urban knowledge
graphs by randomly removing the POI entities
in the target city

» compared with the scale of historical data,
environmental factors play a more critical role

in the traffic generation task
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Figure 7: Sensitivity to the training data size by changing the
proportion of base stations in the training dataset.
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Experiments
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Figure 9: Sensitivity to the number of traffic pattern clusters.

Dimensions of base station representations
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Experiments

Cities | Beijing (Source) — Shanghai (Target) | Beijing (Source) — Nanjing (Target)

Traffic Volume First-order Daily Periodic Traffic Volume First-order Daily Periodic
Methods y .

Difference Component Difference Component
| JSD A JsD A RMSE A | JSD A JsD A RMSE A

Trans 0.4258 131.16%  0.1429 54.65% 0.0731 -0.14% 0.5310 58.89% 0.1656 161.67% 0.0819 94.54%
Trans+ PD 0.4040 119.33%  0.1409 32.49% 0.0740 1.09% 0.5100 32.6% 0.1666 161.83%  0.0594 41.09%
Trans+ Egs 0.4303 133.6% 0.1277 38.2% 0.0730 -0.27% 0.5307 38.8% 0.1564 148.74%  0.0589 39.9%
Trans+ Zgs 0.3979 116.02%  0.0988 6.93% 0.0734 0.27% 0.5134 33.62% 0.1540 154.1% 0.0574 36.34%
RNN 0.6534 257.44%  0.0709 -23.27%  0.0796 8.74% 0.7293 118.22%  0.0862 35.96% 0.0566 34.44%
RNN+ PD 0.5043 173.78%  0.1311 41.88% 0.0786 7.368% 0.6154 84.14% 0.1427 125.08%  0.0737 75.06%
RNN+ Egs 0.5219 183.33% 0.1336 44.59% 0.0848 15.85% 0.7129 113.32% 0.0774 22.08% 0.0587 39.43%
RNN+ Zgs 0.5042 173.72% 0.1311 41.88% 0.0786 7.368% 0.5914 76.96% 0.1322 108.52%  0.062 47.27%
TCN 0.5849 217.54%  0.1344 45.45% 0.0784 7.1% 0.8416 151.83% 0.1019 60.73% 0.0636 51.07%
TCN+ PD 0.4592 149.29% 0.0669 -27.6% 0.0784 7.1% 0.6013 79.92% 0.1097 73.03% 0.0636 51.07%
TCN+ Egs 0.4252 130.84%  0.0979 3.95% 0.0780 0.56% 0.8242 146.62%  0.1443 127.6% 0.0537 27.35%
TCN+ Zgg 0.3770 104.67%  0.0734 -20.56%  0.0784 11% 0.,4739 41.8% 0.1023 61.36% 0.0636 21.07%
ADAPTIVE 0.3247 76.28% 0.1304 41.13% 0.0641 -12.43% | 0.5561 66.4% 0.1710 169.72%  0.0517 22.8%
ADAPTIVE+ PD | 0.6250 23931% 0.1119 21.1% 0.0457 -37.57% | 0.7109 112.72%  0.1444 127.76%  0.0363 -13.76%
ADAPTIVE+ Egs | 0.2304 25.08% 0.0729 -21.1% 0.0658 -10.11% | 0.4951 48.14% 0.1311 106.78%  0.0457 8.35%
ADAPTIVE+Zgs | 0.1842 0 0.0924 0 0.0732 0 0.3342 0 0.0634 0 0.0421 0




Experiments

Cities ‘ Nanjing (Source) — Beijing (Target) | Nanjing (Source) — Shanghai (Target)
Traffic Volume First-order Daily Periodic Traffic Volume First-order Daily Periodic
Methods 2 A
Difference Component Difference Component
| JSD A JSD A RMSE A | JSD A JsD A RMSE A
Trans 0.5869 185.46%  0.1857 125.64% 0.1021 89.78% 0.4173 165.46%  0.1326 79.67% 0.0713 -9.06%
Trans+ PD 0.6734 227.53%  0.1894 130.13%  0.1037 92.75% 0.39406 151.02%  0.1266 71.54% 0.0720 -8.16%
Trans+ Egg 0.6814 231.42%  0.1803 119.08%  0.1012 88.1% 0.4319 174.75%  0.1022 358.48% 0.0712 -9.18%
Trans+ Zgg 0.6627 222.32% 0.1653 100.85%  0.0987 83.46% 0.3879 146.76%  0.0924 25.2% 0.0696 -11.22%
RNN 0.7712 275.1% 0.1314 59.66% 0.0999 85.69% 0.5876 273.79%  0.0903 22.36% 0.0710 -0.44%
RNN+ PD 0.7016 241.25%  0.1049 27.46% 0.1088 102.23% | 0.4418 181.04% 0.101 36.86% 0.0786 0.26%
RNN+ Egs 0.7185 24940%  0.0894 8.63% 0.1041 93.49% 0.4697 198.79%  0.1353 83.33% 0.0854 8.93%
RNN+ Zgg 0.6016 192.61% 0.0944 14.7% 0.1078 100.37% | 0.4416 180.92%  0.1011 36.99% 0.0717 -8.55%
TCN 0.6037 193.63%  0.1623 97.21% 0.1068 98.51% 0.5926 276.97%  0.1097 48.64% 0.0777 -0.89%
TCN+ PD 0.5012 143.77%  0.0867 5.35% 0.1076 100.0% 0.516 228.24%  0.0965 30.76% 0.0816 4.08%
TCN+ Egs 0.8513 314.06%  0.0858 4.25% 0.0965 79.37% 0.5144 227.23%  0.1079 46.21% 0.0890 13.52%
TCN+ Zgs 0.3855 87.5% 0.1218 48.0% 0.1076 100.0% 0.3682 134.22%  0.0876 18.7% 0.0748 -4.59%
ADAPTIVE 0.3406 65.60% 0.1635 98.66% 0.0711 32.16% 0.3430 118.19%  0.1406 90.51% 0.0633 -19.26%
ADAPTIVE+ PD | 04311 109.68% 0.0453  -4496%  0.0692 28.02% 0.5881 274.11%  0.0864 17.07% 0.0454  -42.09%
ADAPTIVE+ Egg | 0.3303 60.65% 0.0584 -29.04%  0.0711 32.16% 0.2218 41.09% 0.0728 -1.36% 0.0656 -16.33%
ADAPTIVE+ Zgs | 0.2056 0 0.0823 0 0.0538 0 0.1572 0 0.0738 0 0.0734 0
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