
 
ACM Trans. On Intelligent Systems and Technology, Vol. 6, No. 2, Article 9, Pub. date: July 2014. 

Urban Computing: Concepts, Methodologies, and 
Applications 
 

YU ZHENG 

Microsoft Research 

LICIA CAPRA 

University College London 

OURI WOLFSON 

University of Illinois at Chicago 

HAI YANG 

Hong Kong University of Science and Technology 
________________________________________________________________________ 
 

Urbanization’s rapid progress has modernized many people’s lives, but also engendered big issues, such as traffic 
congestion, energy consumption, and pollution. Urban computing aims to tackle these issues by using the data 

that has been generated in cities, e.g., traffic flow, human mobility and geographical data. Urban computing 

connects urban sensing, data management, data analytics, and service providing into a recurrent process for an 
unobtrusive and continuous improvement of people’s lives, city operation systems, and the environment. Urban 

computing is an interdisciplinary field where computer sciences meet conventional city-related fields, like 

transportation, civil engineering, environment, economy, ecology, and sociology, in the context of urban spaces. 
This article first introduces the concept of urban computing, discussing its general framework and key challenges 

from the perspective of computer sciences. Secondly, we classify the applications of urban computing into seven 

categories, consisting of urban planning, transportation, the environment, energy, social, economy, and public 
safety & security, presenting representative scenarios in each category. Thirdly, we summarize the typical 

technologies that are needed in urban computing into four folds, which are about urban sensing, urban data 

management, knowledge fusion across heterogeneous data, and urban data visualization. Finally, we outlook the 
future of urban computing, suggesting a few research topics that are somehow missing in the community. 
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1. INTRODUCTION  

Urbanization’s rapid progress has led to many big cities, which have modernized many 

people’s lives but also engendered big challenges, such as air pollution, increased energy 

consumption and traffic congestion. Tackling these challenges can seem nearly impossible 

years ago given the complex and dynamic settings of cities. Nowadays, sensing 

technologies and large-scale computing infrastructures have produced a variety of big data 

in urban spaces, e.g., human mobility, air quality, traffic patterns, and geographical data. 

The big data implies rich knowledge about a city and can help tackle these challenges when 

used correctly. For instance, we can detect the underlying problems in a city’s road network 

through analyzing the city-wide human mobility data. The discovery can help better 

formulate city planning for the future [Zheng et al. 2011b]. Another example is to exploit 

the root cause of urban air pollution by studying the correlation between air quality and 

other data sources, such as traffic flow and points of interests (POIs) [Zheng et al. 2013b].   

 Motivated by the opportunities of building more intelligent cities, we came up with a 

vision of urban computing, which aims to unlock the power of knowledge from big and 

heterogeneous data collected in urban spaces and apply this powerful information to solve 

major issues our cities face today [Zheng et al. 2012c; 2013a]. In short, we are able to tackle 

the big challenges in big cities by using big data, as depicted in Figure 1 A). 

 

 
Figure 1. Motivation and goal of urban computing 

 

Though the term of urban computing is not first used in this article [Kindberg et al. 2007; 

Kostakos and O’Neill 2008], it is still a vague concept with many questions open.  For 

example, what are the core research problems of urban computing? What are the challenges 

of the research theme? What are the key methodologies for urban computing? What are the 

representative applications in this domain, and how does an urban computing system work?   

To address these issues, we formally coin in urban computing in this article and 

introduce its general framework, key research problems, methodologies, and applications. 

This article will help the community better understand and explore this nascent area, 

therefore generating quality research results and real systems that can eventually lead to 

greener and smarter cities. In addition, urban computing is a multi-disciplinary research 

field, where computer sciences meet conventional city-related areas, such as civil 

engineering, transportation, economics, energy engineering, environmental sciences, 

ecology, and sociology. This paper mainly discusses the aforementioned problems from 

the perspective of computer sciences.   

    The rest of the paper is organized as follows. In Section 2, we introduce the concept of 

urban computing, presenting a general framework, and the key challenges of each step in 

the framework. The datasets that are frequently used in urban computing are also briefed. 
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In Section 3, we categorize the applications of urban computing into seven groups, 

presenting some representative scenarios in each group. In Section 4, we introduce four 

folds of methodologies that are usually employed in an urban computing scenario. In 

Section 5, we conclude the article and point out a few future direction of this research 

theme. 

2. FRAMEWORK OF URBAN COMPUTING 

2.1 Definition  

Urban computing is a process of acquisition, integration, and analysis of big and 

heterogeneous data generated by a diversity of sources in urban spaces, such as sensors, 

devices, vehicles, buildings, and human, to tackle the major issues that cities face, e.g., air 

pollution, increased energy consumption and traffic congestion. Urban computing connects 

unobtrusive and ubiquitous sensing technologies, advanced data management and analytics 

models, and novel visualization methods, to create win-win-win solutions that improve 

urban environment, human life quality, and city operation systems, as shown in Figure 1 

B). Urban computing also helps us understand the nature of urban phenomena and even 

predict the future of cities. Urban computing is an interdisciplinary field fusing the 

computing science with traditional fields, like transportation, civil engineering, economy, 

ecology, and sociology, in the context of urban spaces. 

2.2 General Framework  

Figure 2 depicts a general framework of urban computing which is comprised of four layers: 

urban sensing, urban data management, data analytics, and service providing. Using urban 

anomaly detection as an example [Pan et al. 2013], we briefly introduce the operation of 

the framework as follows. 

In the urban sensing step, we constantly probe people’s mobility, e.g., routing behavior 

in a city’s road network, using GPS sensors or their mobile phone signals. We also 

continuously collect the social media people have posted on the Internet. In the data 

management step, the human mobility and social media data are well organized by some 

indexing structure that simultaneously incorporates spatio-temporal information and texts, 

for supporting efficient data analytics. In the data analytics step, once an anomaly occurs, 

we are able to identify the locations where people’s mobility significantly differs from its 

origin patterns. In the meantime, we can describe the anomaly by mining representative 

terms from the social media that is related to the locations and time span. In the service 

providing step, the locations and description of the anomaly will be sent to the drivers 

nearby so that they can choose a bypass.  In addition, the information will be delivered to 

the transportation authority for dispersing traffic and diagnosing the anomaly. The system 

continues the loop for an instant and unobtrusive detection of urban anomalies, helping 

improve people’s driving experiences and reduce traffic congestion.  

Compared with other systems, e.g., web search engines which are based on a single 

(modal)-data-single-task framework (i.e., information retrieval from web pages), urban 

computing holds a multi (modal)-data-multi-task framework. The tasks of urban 

computing include improving urban planning, easing traffic congestion, saving energy 

consumption, and reducing air pollution, etc. Additionally, we usually need to harness a 

diversity of data sources in a single task. For instance, the aforementioned anomaly 

detection uses human mobility data, road networks, and social media. Different tasks can 

be fulfilled by combining different data sources with different data acquisition, 

management and analytics techniques from different layers of the framework.  
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Figure 2. General framework of urban computing 

 

2.3 Key Challenges 

The goals and framework of urban computing result in three folds of main challenges: 

 Urban sensing and data acquisition: The first is data acquisition techniques that can 

unobtrusively and continually collect data in a citywide scale. This is a non-trivial 

problem given the three italic terms. Monitoring the traffic flow on a road segment is 

easy; but continually probing the citywide traffic is challenging as we do not have 

sensors on every road segment. Building new sensing infrastructures could achieve 

the goal but would aggravate the burden of cities in turn. How to leverage what we 

already have in urban spaces intelligently is a way yet to explore. Human as a sensor 

is a new concept that may help tackle this challenge. For instance, when users post 

social media on a social networking site, they are actually helping us understand the 

events happening around them. When many people drive on a road network, their 

GPS traces may reflect the traffic patterns and anomalies. However, as a coin has two 

sides, despite the flexibility and intelligence of human sensors, human as a sensor also 

brings three challenges (we will discuss more about this part in Section 4.1): 

 Energy consumption and privacy: It is a non-trivial problem for participatory 

sensing applications, where users proactively contribute their data (usually using 

a smart phone), to save the energy of a smart phone and protect the privacy of a 

user during the sensing process. There is a trade-off among energy, privacy and 

the utility of shared data [Xue et al. 2013]. 

 Loose-controlled and non-uniform distributed sensors: We can put traditional 

sensors anywhere we like and configure these sensors to send sensing readings 

at a certain frequency. However, we cannot control people who would send 

information anytime they like or do not share data sometimes. In some places, 

we may not even have people at some moments, i.e., could not have sensor data, 

inevitably resulting in data missing and sparsity problems. On the other hand, 
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the user-generated content in some location (with many people) maybe over 

sufficient or even redundant, adding unnecessary workload for sensing, 

communication, and storage. Additionally, what we can obtain is always a 

sample of data from partial users, as not everyone shares data. The distribution 

of the sample data may be skewed from the distribution of the entire dataset, 

depending on the movement of people. 

 Unstructured, implicit, and noise data: The data generated by traditional sensors 

is well structured, explicit, clean and easy to understand. However, the data 

contributed by users is usually in a free format, such as texts and images, or 

cannot explicitly lead us to the final goal as if using traditional sensors. 

Sometimes, the information from human sensors is also quite noisy.   

Using the application presented in [Zhang et al. 2013] as an example, we illustrate the 

two challenges. In this example, Zhang et al. aim to use GPS-equipped taxi drivers as 

sensors to detect the queuing time in a gas station (when they are refueling taxis) and 

further infer the number of people who are also refueling their vehicles there. The 

goal is to estimate the gas consumption of a station and finally the citywide gas 

consumption in a given time span. In this application, what we obtain is the GPS 

trajectories of a taxi driver, which does not tell us the result explicitly. In addition, we 

cannot guarantee having a taxi driver in each gas station anytime, which results in a 

data missing problem. In the meantime, the presences of taxis in a station may be 

quite different from that of other vehicles (i.e., the skewed distribution); e.g., 

observing more taxis in a gas station does not denote more other vehicles. 

Furthermore, taxi drivers may park taxis somewhere close to a gas station just for 

having a rest or waiting for a traffic light. These observations from the GPS trajectory 

data are noisy. In short, we usually need to learn what we really need, from partial, 

skewed, noisy, and implicit data generated by human sensors.  

 Computing with heterogeneous data:  

 Learn mutually reinforced knowledge from heterogeneous data: Solving urban 

challenges needs to oversee a broad range of factors, e.g., to explore air 

pollutions needs simultaneously study the traffic flow, meteorology, and land 

uses. However, existing data mining and machine learning techniques usually 

handle one kind of data, e.g., computer vision is dealing with images, and natural 

language processing is based on texts. According to the studies [Zheng et al. 

2013b; Yuan et al. 2012], equally treating features extracted from different data 

sources (e.g., simply putting these features into a feature vector and throw them 

into a classification model) does not achieve the best performance. In addition, 

using multiple data sources in an application leads to a high-dimension space, 

which usually aggravates data sparsity problem. If not handled correctly, more 

data sources would even compromise the performance of a model. This is calling 

for advanced data analytics models that can learn mutually reinforced 

knowledge among multiple heterogeneous data generated from different sources, 

including sensors, people, vehicles, and buildings. See Section 4.1 for more 

details. 

 Both effective and efficient learning ability: Many urban computing scenarios, 

e.g., detecting traffic anomalies and monitoring air quality, need instant answers. 

Besides just increasing the number of machines to speed up the computation, we 

need to aggregate data management, mining and machine learning algorithms 

into a computing framework to provide a both effective and efficient knowledge 

discovery ability. In addition, traditional data management techniques are 
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usually designed for a single modal data source. Advanced management 

methodology that can well organize multi-modal data (such as streaming, 

geospatial, and textual data) is still missing. So, computing with multiple 

heterogeneous data is a fusion of data and also a fusion of algorithms. See 

Section 4.3 for more discussions.  

 Visualization: Massive data brings a tremendous amount of information that 

needs a better presentation. A good visualization of original data could inspire 

new idea to solve a problem, while the visualization of computing results can 

reveal knowledge intuitively so as to help a decision making. The visualization 

of data may also suggest the correlation or causality between different factors. 

The multimode data in urban computing scenarios leads to high dimensions of 

views, such as spatial, temporal, and social, for a visualization. How to inter-

relate different kinds of data in different views and detect patterns and trends is 

challenging. In addition, when facing multiple types and huge volume of data, 

how exploratory visualization [Andrienko et al. 2003] can provide an interactive 

way for people to generating new hypothesis becomes even more difficult. This 

is calling for an integration of instant data mining techniques into a visualization 

framework, which is still missing in urban computing.  

 Hybrid systems blending the physical and virtual worlds: Unlike a search engine or 

a digital game where the data was generated and consumed in the digital world, urban 

computing usually integrates the data from both worlds, e.g., combining traffic with 

social media. Alternatively, the data (e.g., GPS trajectories of vehicles) was generated 

in the physical world, and then sent back to the digital world, such as a Cloud system. 

After processed with other data sources in the Cloud, the knowledge learned from the 

data will be used to serve users from the physical world via mobile clients, e.g., driving 

direction suggestion, taxi ridesharing, and air quality monitoring. The design of such 

a system is much more challenging than conventional systems that only reside in one 

world, as the system needs to communicate with many devices and users 

simultaneously, send and receive data of different formats and at different frequencies.  

2.4 Urban Data 

In this section, we introduce the frequently used data sources in urban computing and 

briefly mention the issues we usually face when using these data sources.  

            2.4.1 Geographical Data                  Road network data may be the most frequently 

used geographical data in urban computing scenarios, e.g., traffic monitoring and 

prediction [Pan and Zheng et al. 2013], urban planning [Zheng et al. 2011b], routing [Yuan 

and Zheng et al. 2010a; 2011b; 2013b], and energy consumption analysis [Zhang et al. 

2013]. It is usually represented by a graph that is comprised of a set of edges (denoting 

road segments) and a collection of nodes (standing for road intersections). Each node has 

a unique geospatial coordinates; each edge is described by two nodes (sometimes also 

called terminals) and a sequence of intermediate geospatial points. Other properties, such 

as a length, speed constraint, type of road, and number of lanes, are associated with an edge.   

       A POI, such as a restaurant and a shopping mall, is usually described by a name, 

address, category, and a set of geospatial coordinates. While there are massive POIs in a 

city, the information of POIs could vary in time (e.g., a restaurant may change its name, or 

be moved to a new location, or be even shut down). As a result, collecting POI data is not 

an easy task. Generally, there are two approaches to produce POI data. One is obtained 
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through existing yellow page data. The geospatial coordinates of an entity are automatically 

translated from its text address by using a geo-coding algorithm. The other is to manually 

collect POI information in the real world, for instance, carrying a GPS logger to record the 

geospatial coordinates of a POI. The latter approach is majorly done by some map data 

providers, such as Navinfo and AutoNavi. Recently, some location-based social 

networking services, like Foursquare, allow end users to create a new POI in the system if 

the POI has not been included. In order to have a large coverage of POIs, the widely used 

online map services, like Bing and Google maps, usually combine the aforementioned two 

approaches to collect POI data. As a result, quite a few issues have been generated. For 

example, how to verify whether the information of a POI is correct? Sometimes, the 

geospatial coordinates of a POI may be inaccurate, leading people to a wrong place. Or, 

how to merge the POI data generated from different sources or approaches [Zheng 2010c].  

       Land use data describes the function of a region, such as residential areas, suburban, 

and forests, originally planned by urban planners and roughly measured by satellite images 

in practice. For example, United States Geological Survey categorizes each 30m x 30m 

square of the U.S. into 21 types of ground cover [US Ground Cover], such as grass land, 

water, and commercial. In many developing countries where cities change over time with 

many new infrastructures built and old buildings removed, the reality of a city may be 

different from its original planning. As the satellite image cannot differentiate between 

fine-grained land use categories, such as educational, commercial, and residential areas, 

obtaining the current land use data of a big city is not easy [Yuan and Zheng et al. 2012a].  

                 2.4.2 Traffic Data                  There are a diversity of ways to collect traffic data, 

such as using loop sensors, surveillance cameras, and floating cars.  Loop sensors are 

usually embedded in pair in major roads, e.g., highways. Instead of recording the absolute 

time, such sensors detect the time interval that a vehicle travels cross two consecutive (i.e. 

a pair of) detectors. Knowing the distance between a pair of loop detectors, we can calculate 

the travel speed on the road based in the time interval. Counting the number of vehicles 

traversing a pair of loop detectors in a time slot, we know the traffic volume on a road. As 

deploying and maintaining loop sensors is very expensive in terms of money and human 

resources, such traffic monitoring technology is usually employed for major roads rather 

than low-level streets. As a result, the coverage of loop sensor is quite limited.  Additionally, 

the loop sensor data does not tell us how a vehicle travels on a road and between two roads. 

Consequently, the travel time that a vehicle spends at an intersection (e.g. waiting for traffic 

lights and direction turns) cannot be recognized from this kind of sensor data.  

       Surveillance cameras are widely deployed in urban areas, generating a huge volume 

of images and videos reflecting traffic patterns. The data provides a visual ground truth of 

traffic conditions to people. However, it is still a challenging task to automatically turn the 

images and videos into a specific traffic volume and travel speed. The machine learning 

model trained for a location is difficult to be applied to other locations, subject to the 

structure of roads in a location and a camera’s settings, such as height (to the ground), 

angle, and focus. As a result, monitoring citywide traffic conditions through this approach 

is majorly based on human effort. 

        Floating Car Data is generated by vehicles traveling around a city with a GPS sensor. 

The trajectories of these vehicles will be sent to a central system and matched onto a road 

network for deriving speeds on road segments. As many cities have already installed GPS 

sensors in taxicabs, buses, and logistics trucks for different purposes, the floating car data 

has already been widely available. In contrast to loop sensors and surveillance cameras-

based approaches, floating car-based traffic monitoring methods have a higher flexibility 
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and a lower deployment cost. However, the coverage of floating car data depends on the 

distribution of the probing vehicles, which may change over time and be skewed in a city 

in a time span. In other words, data sparsity problem still exists, calling for advanced 

knowledge discovery technology that can recover the citywide traffic conditions based on 

limited data. Castro et al. [2013] presents a survey on turning GPS trajectories of taxis into 

social and community dynamics. 

                2.4.3 Mobile Phone Signals             A call detail record (CDR) is a data record, 

produced by a telephone exchange, containing attributes that are specific to a single 

instance of a phone call, such as the phone numbers of both the calling and receiving parties, 

the start time, and duration of that call. Having such kind of data, we can study the behavior 

of an individual or build a network between different users. The similarity between users 

can be also inferred. Another category of mobile phone signals cares more about the 

location of a user rather than the communication between phones. Using a triangle 

positioning algorithm, a mobile phone’s location can be roughly calculated based on three 

or more base stations. This kind of data denotes citywide human mobility, which can be 

used for detecting urban anomalies, or in a long run for studying a city’s functional regions 

and urban planning. Sometimes, the two kinds of mobile phone data are integrated, i.e., 

having transaction records between phones and the location of each phone.   

              2.4.4 Commuting Data                     People traveling in cities generate a huge 

volume of commuting data, such as the card swiping data in a subway system and a bus 

line, and the ticketing data in parking lots. Card swiping data is widely available in a city’s 

public transportation systems, where people swipe a (RFID) card when entering into a 

subway station or get on a bus. Some systems also require people to swipe their cards again 

when leaving a station or getting off a bus. Each transaction record consists of a timestamp 

of entering/leaving a station and the ID of the station as well as the fare for this trip. This 

is another kind of data representing citywide human mobility.   

       Street side parking is usually paid through a parking meter. The payment information 

of parking slots may include the time when the ticket is issued and the parking fare. The 

data indicates the traffic of vehicles around a place, which can be used to not only improve 

a city’s parking infrastructures but also analyzing people’s travel patterns. The latter can 

support geo-ads and location choosing for a business.   

              2.4.5 Environmental Monitoring Data                   Meteorological data includes 

humidity, temperature, barometer pressure, wind speed, and weather conditions, which can 

be crawled from public websites.  Air quality data, such as the concentration of PM2.5, 

NO2, and SO2, can be obtained from air quality monitoring stations. Some gasses like CO2 

and CO can even be detected by portable sensors. When communicating with people, air 

quality is represented by an Air Quality Index (AQI) and a category, e.g., good, moderate, 

and unhealthy. Influenced by multiple complex factors, such as traffic flow and land uses, 

urban air quality varies by location significantly and changes over time tremendously. As 

a consequence, a limited number of monitoring stations cannot reveal the fine-grained air 

quality throughout a city. 

       Noise data is another kind of environmental data that has a direct impact to people’s 

mental and physical health. Measuring noise pollution depends on both the intensity of 

noises and people’s tolerance to noises [Zheng et al. 2014a]; the latter changes over time. 

In New York City, there is a 311 platform where people can complain something imperfect 

(but not urgent) by making a phone call. Each complaint is associated with a timestamp, a 
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location, and a category. Noise is the third largest category in the data. The data can be 

used to diagnose a city’s noise pollution.   

         Satellite remote sensing scans the surface of earth with rays of different lengths to 

generate images representing the ecology and meteorology of a wide region.  

              2.4.6 Social Network Data             Social network data consists of two parts. One 

is a social structure, represented by a graph, denoting the relationship, or interdependency, 

or interaction between users. The other is the user-generated social media, such as texts, 

photos, and videos, which contain rich information about a user’s behavior/interests.  When 

adding a location to social media [Zheng et al. 2011a], e.g., check-in data from Foursquare 

and geo-tagged tweets, we can model people’s mobility in urban areas, which help us detect 

and understand urban anomalies [Lee et al. 2010; Pan and Zheng et al. 2013]. 

             2.4.7 Economy                There are a variety of data representing a city’s economic 

dynamics, e.g., transaction records of credit cards, stock prices, housing prices, and 

people’s incomes. When used aggregately, these datasets can capture the economic rhythm 

of a city, therefore predicting future economy.  

            2.4.8 Energy        The gas consumption of vehicles on road surfaces and in gas 

stations reflect a city’s energy consumption. The data can be obtained directly from sensors 

(e.g., some insurance companies have been collecting different kinds of sensor data from a 

vehicle) or inferred from other data sources implicitly, e.g. from the GPS trajectory of a 

vehicle. The data can be used to evaluate a city’s energy infrastructures, e.g., the 

distribution of gas stations, or calculate the pollution emission from vehicles on road 

surfaces, or find the most gas-efficient driving route. Additionally, the electricity 

consumption of an apartment or a building can be used to optimize residential energy usage, 

shifting peak loads to periods of low demand.  

            2.4.9 Health Care        There are already abundant health care and disease data 

generated by hospitals and clinics. In addition, the advances of wearable computing enable 

people to monitor their own health conditions, such as heart rate, pulse, and sleep time, 

with some wearable devices. The data can even be sent to a cloud for diagnosing a disease 

and doing a remote medical examination. Besides studying an individual’s health 

conditions, in urban computing, we can use these datasets aggregately to study the impact 

of the environmental change to people’s health. For example, how the air pollution is 

related to the asthma situation in Hong Kong? How urban noise could impact people’s 

mental health in New York City? 

 

3. APPLICATIONS IN URBAN COMPUTING 
Before presenting the frequently-used technology in urban computing, we first list seven 

categories of urban computing scenarios for urban planning, transportation, environment, 

energy, social, economy, and the public safety & security, as illustrated in Figure 3. We 

select some representative applications in each category, mainly focusing on its goal, 

motivation, results, and the data used. The methodology of each application is briefly 

mentioned here but will be discussed more in Section 5.  
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Figure 3 Main categories of applications in Urban Computing 

 

3.1 Urban Computing for Urban Planning 
An effective planning is of great importance to building an intelligent city. Formulating 

urban planning requires evaluating a broad range of factors, such as traffic flow, human 

mobility, point of interests, and road network structures. These complex and fast evolving 

factors turn urban planning into a very challenging task. Traditionally, urban planners rely 

on labor-intensive surveys to inform their decision-making. For example, to understand 

urban commuting patterns, a series of research has been done based on travel survey data 

[Hanson and Hanson 1980; Gandia 2012; Jiang et al. 2012]. The information obtained 

through the surveys may not be sufficient and timely enough. Recently, the widely available 

human mobility data generated in urban spaces actually reflects the underlying problems 

of a city, providing urban planners with opportunities to better formulate future planning. 

 

   3.1.1 Gleaning Underlying Problems in Transportation Networks.     Zheng et al. 

[2011b] gleaned the underlying problems in Beijing’s transportation network by analyzing 

the GPS trajectories generated by 33,000 taxicabs over a period of three years.  

They first partitioned the urban areas of Beijing into disjoint regions using major roads, 

such as highways and arterial roads [Yuan et al. 2012b], as illustrated in Figure 4 A). The 

pick-up and drop-off points of passengers were extracted from each taxi trajectory to 

formulate the origin-destination (OD) transitions between these regions. A region graph 

was then built based on the OD transitions, where a node was a region and an edge 

represented the aggregation of the transitions between two regions, as depicted in Figure 4 

B). Using a data-driven method, a day was divided into a few time spans, which 

corresponds to morning rush hours, evening peak hours, and the rest. For each time span, a 

region graph was built based on the taxi trajectories falling into the time span. As 

demonstrated in Figure 4 C), three features, consisting of the volume of taxis (|S|), average 

speed of these taxis E(V), and a detour ratio 𝜃, were extracted for each edge based on the 

associated taxi trajectories. Representing an edge with a point in the three feature dimension 

space, the points with large |S|, small E(V), and big 𝜃 could be underlying problems. That 

is, the connection between two regions was not effective enough to support the traffic 

traveling between them, resulting in a large volume, low speed, and big detour ratio.  
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Figure 4. Find underlying problem of Beijing’s road network using taxi trajectories 

Using a skyline algorithm, a set of points (called skyline edges) can be detected from 

the data of each time slot. As illustrated in Figure 4 G), the skyline edges from different 

time slots of the same day were connected to formulate skyline graphs, if they were spatially 

overlapped by some nodes and temporally adjacent. Finally, some sub-graph patterns can 

be obtained through mining the skyline graph across multiple days, e.g., 𝑟1 → 𝑟2 → 𝑟8 → 𝑟4 
occurred in all three days. Such graph patterns represent the underlying problems in a road 

network, showing the correlations between individual regions and avoiding the false alerts 

which could be caused by some traffic accidents. By comparing the results detected from 

two consecutive years, the research can even evaluate if a newly built transportation facility 

works well. As demonstrated in Figure 4 D), E) and F), the underlying problem detected in 

2010 disappeared in 2011 because of a newly-launched subway line. In short, the subway 

line worked well in resolving the problem. 

3.1.2 Discover Functional Regions.           The development of a city gradually fosters 

different functional regions, such as educational areas and business districts, which support 

different needs of people’s urban lives and serve as a valuable organizing technique for 

framing detailed knowledge of a metropolitan. These regions may be artificially designed 

by urban planners, or naturally formulated according to people’s actual lifestyle, and would 

change their functions and territories with the development of a city. The understanding of 

functional regions in a city can calibrate urban planning and facilitate other applications, 

such as choosing a location for a business.  

Yuan and Zheng et al. [2012a] proposed a framework (titled DRoF) that Discovers 

Regions of different Functions in a city using human mobility between regions and POIs 

located in a region. For example, the red regions shown in Figure 5 A) denote the 

educational and scientific areas of Beijing. However, the function of a region is compound 

rather than single, represented by a distribution across multiple functions. The regions with 

the same color actually share a similar distribution of functions. On the other hand, even if 

a region is recognized as an educational area, it does not mean every part of the region 

serves this function. For instance, there could be some shopping centers around a university. 

So, given a function, Yuan and Zheng further identified its kernel density distribution 

[Wand and Jones 1995]. Figure 5 B) shows the density distribution of commercial areas in 

Beijing; the darker the higher probability the location could be a commercial area. In their 

methodology, a city was segmented into disjointed regions according to major roads, such 

as highways and urban express ways. They infer the functions of each region using a topic-

based inference model, which regards a region as a document, a function as a topic, 
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categories of POIs (e.g., restaurants and shopping malls) as metadata (like authors, 

affiliations, and key words), and human mobility patterns (when people reach/leave a 

region and where people come from and leave for) as words. As a result, a region is 

represented by a distribution of functions, each of which is further denoted by a distribution 

of mobility patterns. Here, human mobility can differentiate between the popularities of 

POIs belonging to the same category. It also indicates the function of a region, e.g., people 

leave residential areas in the morning and return in the evening. Specifically, the human 

mobility data was extracted from the GPS trajectories generated by over 33,000 taxis over 

a period of three months in 2010 and 2012 respectively. Finally, nine kinds of functional 

regions were identified based on the clustering results and human labeling. 

    
   A) Functional regions     B) Function density         C) Results of 2010                  D) Results of 2011 

Figure 5. Identify functional regions in a city using human mobility and POIs 

  There are other approaches to this problem.  For example, Toole et al. [2012] utilized 

call detail records, which provide information on the location of mobile phones any time a 

call is made or a text message is sent, to measure spatiotemporal changes in phone activities. 

Using a classification algorithm, they inferred the land use of a region based on the dynamic 

phone activity patterns in the region. Three weeks of call records for roughly 600,000 users 

in the Boston region were used to infer four kinds of land uses. Different from Yuan’s 

method, which is an unsupervised learning algorithm, Toole et al. approached the problem 

with a supervised learning algorithm.  In another example, using a database approach, 

Sheng et al. [2010] searched for some regions with a similar distribution of POIs to a given 

region. Since POI data is very important in determining the function of a region, ensuring 

its quality, e.g., matching and merging POIs from different sources, is also a practical 

problem [Zheng et al. 2010c]. 
 

     3.1.3 Detecting a City’s Boundary.              The regional boundaries defined by 

governments may not respect the natural ways that people interact across space. The 

discovery of the real borders of regions according to the interaction between people can 

provide decision-support tools for policy makers, suggesting optimal administrative 

borders for a city. The discovery also helps government understand the evolving of a city’s 

territory. The general idea of this category of research is to first build a network between 

locations based on human interaction, e.g., GPS tracks or phone call records, and then 

partition the network using some community discovery method, which finds some location 

clusters with denser interaction between locations in the cluster than between clusters.  

Ratti et al. [2010] proposed a fine-grained approach to regional delineation, through 

analyzing the human network inferred from a large telecommunications database in Great 

Britain. Given a geographical area and some measure of the strength of links between its 

inhabitants, they partitioned the area into smaller, non-overlapping regions while 

minimizing the disruption to each person’s links. The algorithm yielded geographically 

cohesive regions that correspond with administrative regions, while unveiling unexpected 

spatial structures that had previously only been hypothesized in the literature.  
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Rinzivillo et al. [2012] addressed the problem of finding the borders of human 

mobility at the lower spatial resolution of municipalities or counties. They mapped vehicle 

GPS tracks onto regions to formulate a complex network in Pisa. A community discovery 

algorithm, namely Infomap, was then used to partition the network into non-overlapped 

sub-graphs.  
     
3.2 Urban Computing for Transportation Systems 

3.2.1 Improving Driving Experiences.               Finding fast driving routes saves both 

the time of a driver and energy consumption as traffic congestion wastes a lot of gas [Hunter 

et al. 2009; Kanoulas et al. 2006]. Intensive studies have been done to learn historical traffic 

patterns [Bejan et al. 2010; Herrera et al. 2010], estimate real-time traffic flows [Herring et 

al. 2010], and forecast future traffic conditions [Castro-Neto et al. 2009] on individual road 

segments in terms of floating car data [Pfoser 2008a; 2008b], such as GPS trajectories of 

vehicles, Wi-Fi and GSM signals. However, the work modeling the city-wide traffic 

patterns is still rare.  
VTrack [Thiagarajan et al. 2009] is a system for travel time estimation based on WiFi 

signals, measuring and localizing the time delays. The system uses a hidden Markov model 

(HMM)-based map matching scheme that interpolates sparse data to identify the most 

probable road segments driven by the user. A travel time estimation method is then 

proposed to attribute travel times to those segments. The experiments show that VTrack 

can tolerate significant noise and outages in these location estimates, and still successfully 

identify delay-prone segments. 

     T-Drive [Yuan and Zheng et al. 2010a; 2011b; 2013b] is a system that provides 

personalized driving directions that adapt to weather, traffic conditions, and your own 

driving habits. The first version of this system [Yuan and Zheng et al. 2010a] only suggests 

the practically fastest path based on historical trajectories of taxicabs. The key insights 

consist of two parts: 1) GPS-equipped taxicabs can be regarded as mobile sensors 

continually probing the traffic patterns on road surfaces; 2) Taxi drivers are experienced 

drivers who can find a really quick route based on their knowledge, which incorporates not 

only the distance of a route but also the traffic conditions and the probability of accidents. 

So, the taxi trajectories imply traffic patterns and human intelligence. To deal with data 

sparsity (i.e., many road segments would not have taxis traversing), the citywide traffic 

patterns is modeled as a landmark graph, as shown in Figure 6 A), where red nodes are top-

k road segments (titled landmarks) frequently traveled by taxis and each blue edge denotes 

the aggregation of taxis’ commutes between two landmarks. The travel time of each 

landmark edge is estimated based on the taxi data using a VE (Variance and Entropy) -

clustering algorithm. T-Drive uses a two-stage routing algorithm that first searches the 

landmark graph for a rough route (represented by a sequence of landmarks) and then 

connects these landmarks with a detailed route. 
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   A) Landmark graph of Beijing (k=4000)                              B) Framework  of T-Drive system 

Figure 6. T-Drive: Driving directions based on taxi trajectories 

 

      The second version of T-Drive [Yuan and Zheng et al. 2011b] mines historical taxis 

trajectories and weather condition records to build four landmark graphs respectively 

corresponding to different weather and days, as shown in Figure 6 B). The system also 

calculates the real-time traffic according to the recently received taxi trajectories and 

predicts future traffic conditions based on the real-time traffic and the corresponding 

landmark graph. A user submits a query, consisting of a source 𝑞𝑠 , a destination 𝑞𝑑 , a 

departure time t and a custom factor  𝛼, from a GPS-enabled mobile phone. Here, 𝛼 is a 

vector representing how fast the user typically drives on different landmark edges.  𝛼 is set 

by a default value at the very beginning and is gradually updated based on the trajectories 

the user has actually driven. T-Drive gives a much more accurate estimate for each user 

and will adjust its suggestions if a person’s driving habits change over time.  As a result, 

the system saves five minutes per 30-minute drive. 

 

       Wang and Zheng et al. [2014] proposed a citywide and real-time model for estimating 

the travel time of any path (represented as a sequence of connected road segments) at 

present time in a city, based on the GPS trajectories of vehicles received in present time 

slots and over a period of history as well as map data sources. The problem has three 

challenges. The first is the data sparsity problem, i.e., many road segments may not be 

traveled by any GPS-equipped vehicles in present time slot. In most cases, we cannot find 

a trajectory exactly traversing a query path either. Second, for the fragment of a path with 

trajectories, there are multiple ways of using (or combining) the trajectories to estimate the 

corresponding travel time. Finding an optimal combination is a challenging problem, 

subject to a tradeoff between the length of a path and the number of trajectories traversing 

the path (i.e., support). Third, we need to instantly answer users’ query which may occur 

in any place of a city. This is calling for an efficient, scalable and effective solution that 

can enable a citywide and real-time travel time estimation. To address these challenges, 

Wang and Zheng et al. modeled different drivers’ travel times on different road segments 

in different time slots with a three dimension tensor. Combining with geospatial, temporal, 

and historical contexts learned from trajectories and map data, they filled in the tensor’s 

missing values through a context-aware tensor decomposition approach. They then devised 

and proved an object function to model the aforementioned tradeoff, with which we find 

the most optimal concatenation of trajectories for an estimate through a dynamic 

programming solution. In addition, they proposed to use frequent trajectory patterns (mined 
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from historical trajectories) to scale down the candidates of concatenation and a suffix-

tree-based index to manage the trajectories received in present time slot. The proposed 

solution was evaluated based on extensive experiments, using GPS trajectories generated 

by more than 32,000 taxis over a period of two months. The results demonstrate the 

effectiveness, efficiency, and scalability of the method beyond baseline approaches, such 

as a simple summation of each individual road segment’s travel time.  

 

 

3.2.2 Improving Taxi Services                    Taxi is an important commuting mode 

between public and private transportations, providing almost door-to-door traveling 

services. In major cities like NYC and Beijing, people usually wait for a nontrivial time 

before taking a vacant taxi, while taxi drivers are eager to find passengers. Effectively 

connecting passengers with vacant taxis is of great importance to saving people’s waiting 

time, increasing taxi drivers’ profit, and reducing unnecessary traffic and energy 

consumption. To address this issue, three categories of research have been done:  

1) Taxi dispatching systems: This kind of systems [Lee et al 2004] accept a user’s 

booking request and assign taxis to pick-up the user. Most systems request people to book 

a taxi in advance, therefore reducing the flexibility of taxi services. Some real-time 

dispatching systems search for proper taxis around a user based on the nearest neighbor 

principle of distance and time. The main challenge the system is faced is to consider the 

uncertainty of taxis’ movement when searching for taxis [Phithakkitnukoon et al. 2010; 

Yamamoto et al. 2010]. As shown in Figure 7 A), taxi K may be a better candidate than (X, 

Y, Z) to pick-up the user, if we could know taxi K is moving towards the user while others 

are leaving out the spatial range. In addition, the traffic condition on routes should also be 

considered to estimate the travel time to pick up the user. 

2) Taxi recommendation systems: This category of systems approach the problem from 

the perspective of recommendation. Ge et al. [2010] developed a mobile recommender 

system which has the ability in recommending a sequence of pick-up points for taxi drivers 

or a sequence of potential parking positions. The goal of the system is to maximize the 

probability of business success and reduce energy consumption. T-Finder [Yuan and Zheng 

et al 2011a; 2014] provides taxi drivers with some locations and the routes to these 

locations, towards which they are more likely to pick up passengers quickly (during the 

routes or in these locations) and maximize the profit of the next trip. T-Finder also suggests 

people some locations (within a walking distance) where they can easily find vacant taxis. 

As illustrated in Figure 7 B), the probabilities of finding a vacant taxi on different road 

segments are visualized with different colors, in which red means very difficult and blue 

denotes very likely. The parking places of taxis are also detected from the GPS trajectories 

of taxis, with an estimate of the number of taxis that will be arriving in the next half hour. 

The major challenge of this category of system is to deal with the data sparsity problem. 

For instance, how to calculate the probability of finding a vacant taxi on road segments 

without sufficient data? 

3) Taxi ridesharing services: Taxi ridesharing is of great importance to saving energy 

consumption and easing traffic congestion while satisfying people’s needs in commute. T-

Share [Ma and Zheng et al. 2013] is a large-scale dynamic taxi-sharing system that accepts 

passengers’ real-time ride requests sent from smart phones and schedules taxis to pick up 

passengers via ridesharing, subject to time, capacity and monetary constraints. As 

illustrated in Figure 7 C), a taxi is scheduled to sequentially pick-up 𝑢1 and 𝑢2, drop-off 

𝑢1, pick-up 𝑢3, and drop-off 𝑢2 and 𝑢3, where ‘+’ means a pick-up and ‘-’ denotes a drop-

off. T-Share maintains a spatio-temporal index which stores the status of each taxi, 
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consisting of current location, number of passengers on board, and the planned route to 

deliver these passengers. When receiving a ride request, T-Share first search the index for 

a set of candidate taxis that are likely to satisfy a user’s query based on some temporal 

constraints. A scheduling algorithm is then proposed to insert the query’s trip into the 

existing schedule of each candidate taxi, finding the taxi that satisfies the query with the 

minimum increase of travel distance. The system creates a win-win-win scenario, yielding 

significant social and environmental benefits. According to a simulation based on the taxi 

trajectories generated by over 30,000 taxis in Beijing, compared with traditional non-

ridesharing, the technology is able to save 120 million liters gasoline per year in Beijing, 

which can support 1 million cars for 1.5 months, save 150 million USD, and reduce 246 

million KG of CO2 emissions. In addition, passengers save 7% in taxi fare and get a 300% 

higher chance of being served, while the income of taxi drivers increases 10% [Ma and 

Zheng et al. 2013].  

The difficulty of achieving such a taxi sharing system lies in two aspects. One is to 

model the time, capacity, and monetary constraints for taxi trips. The other is the heavy 

computational load caused by the dynamics and large scale of passengers and taxis, which 

calls for efficient search and scheduling algorithms. Taxi users usually submit their queries 

in last minute before a departure rather than scheduling in advance. A ride request can 

come from anywhere and anytime, while taxis are continually traveling around in a city. 

Of course, to push this technology into reality, there are still other non-technical problems 

that needs to be solved, e.g., the credit of a passenger and taxi driver as well as some 

security issues. 

 

 
 

Figure 7 Three categories of systems for improving taxi services 

 

3.2.3 Improving Public Transportation Systems.      By 2050 it is expected that 70% 

of the world’s population will be living in cities. Municipal planners will face an 

increasingly urbanised and polluted world, with cities everywhere suffering an overly 

stressed road transportation network. Building more effective public transportation systems, 

as alternatives to private vehicles, has thus become an urgent priority, both to provide a 

good quality of life and a cleaner environment, and to remain economically attractive to 

prospective investors and employees. Public mass transit systems, coupled with integrated 

fare management and advanced traveller information systems, are considered key enablers 

to better manage mobility. In the following subsections, we review some of the latest 

applications of urban computing across three public transport modalities: buses, subway, 

and shared bicycle schemes. 
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  1) Bus Services: In order to attract more riders, bus services not only need to be more 

frequent, but also more reliable. Watkins et al. [2011] conducted a study on the impact of 

providing real-time bus arrival information directly on riders’ mobile phones, and found it 

to reduce not only the perceived wait time of those already at a bus stop, but also the actual 

wait time experienced by customers who plan their journey using such information. In 

other words, mobile real-time information has the ability to improve the experience of 

transit riders by making the information available to them before they reach the stop. In 

cases where GPS receivers have not been deployed on buses themselves, alternative 

solutions have been explored to gather the same information, but in a cheaper and less 

intrusive manner. Zimmerman et al. [2011] were the first to develop, deploy and evaluate 

a system called Tiramisu, where commuters share GPS traces, as collected from the GPS 

receivers on their mobile phones. Tiramisu then processes incoming traces and generates 

real-time arrival time predictions for buses. As the GPS trajectories may be a mixture of 

different transportation modes, e.g., first taking a bus and then walking, Zheng et al. [2008a; 

2008b; 2010b] proposed a method to infer a user’s transportation modes (consisting of 

driving, walking, riding a bike, and taking a bus) in each segment of a trajectory. Once the 

trajectories have been classified by transportation modes, a more accurate estimate can be 

made for bus travel time or driving time prediction.  

     As the process of urbanization keeps changing our cities, it is essential for bus transit 

services to adapt their routes over time, so to keep meeting the mobility demands of their 

citizens. However, the pace at which bus routes are updated is much slower than the pace 

at which citizens’ needs change. Bastani et al. [2011] proposed a data-centric approach to 

tackle the issue: they developed a new mini-shuttle transit system called flexi, whose routes 

are flexibly derived from actual demand, by analyzing passenger trip data from a large set 

of taxi trajectories. In a similar vein, Berlingerio et al. [2013] analysed the anonymised and 

aggregated Call Detail Records (CDRs) from Abidjan, in the Ivory Coast, with the aim to 

inform the planning of a public transit network using mobile phone. In this context, the 

resource-intensive transportation planning processes prevalent in the West are not 

affordable; using mobile phone data to perform transit analysis and optimization represents 

a new frontier for transport planning in developing countries, where mobile phones have 

deep penetration, so that their anonymised flow data can be readily mined. 

 

2) Subway Services: Automated fare collection (AFC) systems (e.g., London’s Oyster Card, 

Seattle’s Orca, Beijing’s Yikatong, Hong Kong’s Octopus, etc.) have been introduced, and 

are now widely adopted, in many metropolitan cities around the world. Apart from 

simplifying access to the city subway network of train services, these smart cards create a 

digital record every time a trip is made, which can be linked back to the individual traveller. 

Mining the travel data that is created as travellers enter and exit stations can give vast 

insight into the travellers themselves: their implicit preferences, travel times, and 

commuting habits.  

        Lathia et al. [2010] mined AFC data with the aim to build more accurate travel route 

planners. They used data collected from the London Underground (tube) system, which 

implements electronic ticketing in the form of RFID-based contact-less smart cards (Oyster 

cards). Unlike some AFC systems, Oyster cards must be used both when entering and 

exiting stations. An in-depth analysis of two large datasets of the London’s tube usage 

demonstrated that there are substantial differences between travellers that emerge. Based 

on the insights, they have automatically extracted features from the AFC data that 

implicitly capture information about a user’s familiarity with a journey, a user’s similarity 

to other travellers, as well as a user’s journey context. Finally, they have used these features 
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to develop personalised travel tools whose aims can be formalised as prediction problems: 

(a) predicting personalised travel times between any origin and destination pairs, to provide 

users with accurate estimates of their transit time, and (b) predicting and ranking the 

interest that individual travellers will have in receiving alert notifications about particular 

stations based on their past travel histories. In a follow-up work, Ceapa et al. [2012] 

performed a spatio-temporal analysis of the same historical Oyster card traces, and 

discovered that crowdedness is a highly regular phenomenon during the working week, 

with spikes occurring for rather short time intervals. They went on to build predictors of 

crowding levels, which can then be incorporated in advanced traveller information systems, 

so to offer travellers more personalised and quality-based planning services. 

        Lathia and Capra [2011a] also analysed AFC data to estimate future travel habits, 

once again for the case of London, UK. By analysing historical travel traces, they have 

been able to extract features about when, where, and how often individual travels, that can 

then be predicted with a high level of accuracy. They have leveraged these findings to build 

tools that can recommend travellers what is the best fare for them to purchase, based on 

their expected travel habits. In so doing, they have demonstrated they could offer savings 

of several hundreds of thousands pounds a year, as misconceptions about our own travel 

behaviours often lead to the incorrect fare being purchased [Lathia and Capra 2011b]. 

      

    3) Bike Sharing Systems: As the world population grows and an ever-increasing 

proportion of people live in cities, designing, maintaining, and promoting sustainable urban 

mobility modes is becoming of paramount importance. Shared bicycle schemes [Shaheen 

et al. 2010] are one such example: their proliferation throughout the world’s metropolises 

clearly reflects the belief that providing easy access to healthy (and quick) modes of 

transport will lead cities away from the congestion and pollution problems they currently 

face. Detailed records are often available about shared bikes’ movement (from where/when 

a bike was taken, to where/when a bike was returned), thus allowing researchers to analyse 

these digital traces to help end-users, who may benefit from both understanding and 

forecasting how the system will be used when planning their own trips; transport operators, 

who may benefit from more accurate models of bicycle flows in order to appropriately 

load-balance the stations throughout the day; and urban planners, who can leverage flow 

data when designing social spaces and policy interventions.  

       Froehlich et al. [2009] were among the first to take a data-centric approach to shared 

bicycle systems, by applying a host of data mining techniques to uncover spatio-temporal 

trends in a city’s data. They performed an in-depth analysis of 13 weeks of Barcelona’s 

Bicing system (Spain), clearly demonstrating the relationships between time of day, 

geography (particularly, clusters of stations within geographic areas of the city) and usage. 

Kaltenbrunner et al. [2010] performed a similar study of Bicing in Barcelona, and Borgnat 

et al. of Lyon, France [2009]. In these studies, the authors focus on temporal properties of 

the bicycle station data in order to train and test classifiers that predict the state (availability 

of bicycles) of each station.  Nair et al. [2012] analysed data from Paris’ (France) Vélib’, 

relating usage to rail station proximity: they uncover the relation between bicycle usage 

and multi-modal trips, thus providing key insights into station placement policy. Finally, 

Lathia et al. [2012] analysed the London’s Cycle Hire scheme over two different three-

month periods, and derived quantitative evidence of how an access policy change impacted 

bike usage across the whole city. 

 

3.3 Urban Computing for the Environment 
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Without an effective and adaptive planning, urbanization’s rapid progress will become a 

potential threat to cities’ environment. Recently, we have witnessed an increasing trend of 

pollutions in different aspects of the environment, such as air quality, noise, and rubbish, 

around the world. Protecting the environment while modernizing people’s life is of 

paramount importance in urban computing.  

           3.3.1 Air Quality.       Information about urban air quality, e.g., the concentration of 

PM2.5, is of great importance to protecting human health and controlling air pollution. 

Many cities are monitoring PM2.5 by building ground-based air quality measurement 

stations. However, there are only a limited number of air quality measurement stations in 

a city (as illustrated in Figure 8 A)) due to the expensive cost of building and maintaining 

such a station. Unfortunately, air quality varies by locations non-linearly and depends on 

multiple factors, such as meteorology, traffic volume, and land uses. As a result, we do not 

really know the air quality of a location without a measurement station. 

 The advances in mobile communication and sensing technologies have proliferated the 

crowdsourcing-based applications, which decompose a complex problem into to small 

tasks and distribute these small tasks to a network of users. The returns from individual 

users will formulate collective knowledge that can solve the complex problem.  

Copenhagen Wheels is a project that installs environmental sensors in a bike’s wheel to 

sense the fine-grained environmental data of a city, including temperature, humidity and 

the concentration of CO2. The human labor for riding a bike is transferred into the power 

to support the operation of on-bike sensors. In addition, the wheel can communicate with 

a user’s mobile phone, through which the collected information is sent to a backend system. 

Likewise, Devarakonda et al. [2013] presented a vehicular-based approach for measuring 

fine-grained air quality in real-time. They devised a mobile device, consisting of a GPS 

receiver, CO sensor, and a cellular modem. Installing such a device on multiple vehicles, 

they would be able to monitor the concentration of CO throughout a city.  Though having 

a huge potential, monitoring the environment through crowdsourcing only works well for 

a few gasses, such as CO2 and CO. The device for measuring aerosol, like PM2.5 and PM10, 

are not easily portable for an individual. Moreover, these devices need a relatively long 

period of sensing time, e.g., 2 hours, before generating an accurate measurement.  

 Another branch of research, e.g., [Guehnemann et al. 2004], is to first estimate the 

traffic flow on road surfaces based on floating car data, and then calculate the emission of 

vehicles based on some empirical equations formulated by environmentalists. This is a 

promising approach to estimate the air pollution nearby roads, but cannot reveal the air 

quality of an entire city as the emission from vehicles is only a part of air pollution.   

Different from existing solutions, Zheng et al. [2013b; 2014a] inferred the real-time 

and fine-grained air quality information throughout a city (as demonstrated in Figure 8 B), 

based on the (historical and real-time) air quality data reported by existing monitor stations 

and a variety of data sources observed in the city, such as meteorology, traffic flow, human 

mobility, structure of road networks, and point of interests (POIs). Instead of using classical 

physical models that explicitly combine factors in a formula based on empirical 

assumptions, they approach this problem from a big data perspective, i.e., using data 

mining and machine learning techniques to build a network between a diversity of data 

sources and air quality indexes (see more technique details in Section 4.3). The fine-grained 

air quality information could help people figure out, say, when and where to go jogging—

or when they should shut the window or put on a facemask, as depicted shown in Figure 8 

C). The information can also be used to suggest the location where we could need to build 

additional monitoring stations if current stations are not enough, as shown in Figure 8 D). 

This is also a step toward identifying the root cause of air pollution in a city, therefore 
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informing government’s decision-making. The approach was evaluated with real data 

sources obtained in 10 cities, including Beijing, Shanghai, Wuhan, and Shenzhen, etc. A 

public website is available at: http://urbanair.msra.cn/.  
 

       
   A) Monitoring stations               B) Fine-grained air quality      C) Routing based on air quality   D) Locations for new stations 

Figure 8. Monitoring real-time and fine-grained air quality using big data 

  

  Chen and Zheng et al. [2014] introduce an indoor air quality monitoring system 

deployed in four Microsoft Campus in China. The system is comprised of sensors deployed 

on different floors of a building, a cloud collecting and analyzing the data from the sensors 

and the public air pollution information, and clients that display real-time air quality data 

of booth outdoor and indoor environments to end users. The system provides users with 

indoor air quality information that can inform people’s decision making in office areas, 

such as when to work out in a gym or turn on an additional air filter in an office. The gap 

between the concentration of PM2.5 in outdoor and indoor environments can measure the 

effectiveness of a HVAC system in filtering PM2.5. In addition, the system integrates 

outdoor air quality information with indoor measurements to adaptively control HVAC 

(heating, ventilation, and air conditions) settings with a view on optimizing runtimes w.r.t. 

energy efficiency and air quality conservation. Using a neural network-based approach, the 

system can even predict the purification time that HVAC needs to reduce the concentration 

of indoor PM2.5 to below a healthy threshold, based on six factors, such as the 

concentration of outdoor/indoor PM2.5, barometer pressure and humidity. Given the 

purification time and the timing that people start working in a building, the number of hours 

that a HVAC system should be turned on ahead of its original schedule can be suggested.  

Extensive experiments using 3-month data demonstrate the advantage of our approach 

beyond baseline methods, e.g., linear regression. With minor decrease in accuracy, the 

system can infer a shorter purification time, thus saving a lot of energy. 

 

                3.3.2 Noise Pollution.   The compound functions of a city and its complex 

settings that incorporate different infrastructures and millions of people have been 

inevitably generating a lot environmental noise. As a result, a large number of people 

around the world are exposed to high levels of noise pollution, which can cause serious 

illnesses ranging from hearing impairment to negatively influencing productivity and 

social behavior [Rana et al. 2010].  

     As an abatement strategy, a number of countries, such as the USA, the United Kingdom, 

and Germany, have started monitoring noise pollution. They typically use a noise map (a 

visual representation of the noise level of an area) to assess noise pollution levels. The 

noise map is computed using simulations based on inputs such as traffic flow data, road or 

rail type, and vehicle type. Since the collection of such input data is very expensive, these 

maps can be updated only after a long period of time. 
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       Silvia et al. [2008] assess environmental noise pollution in urban areas, by using 

wireless sensor networks. To deploy and maintain a citywide sensor network, especially in 

major cities like NYC, however, is very expensive, in terms of money and human resources.  

       Another solution is to take advantage of crowdsourcing, where people collect and 

share their ambient environmental information using a mobile device, e.g., a smart phone. 

For example, NoiseTube [Nicolas et al. 2009] presents a person-centric approach that 

leverages the noise measurements shared by mobile phone users to paint a noise map in a 

city.  Based on NoiseTube, D'Hondt and Stevens [2011] conducted a citizen science 

experiment for noise mapping a 1 km2 area in the city of Antwerp. Extensive calibration 

experiments are also carried, investigating both frequency-dependent and white noise 

behavior. The main objective of this experiment is to investigate the quality of the obtained 

noise map by participatory sensing, compared with official simulation-based noise maps.  

       In [Rana et al 2010], an end-to-end, context-aware, noise mapping system called Ear-

Phone is designed and implemented. Different from phone users actively uploading their 

measurements in [Nicolas et al. 2009; D'Hondt and Stevens 2011], an opportunistic sensing 

approach is proposed, where noise level data are collected without informing smart phone 

users. One major problem solved in this paper is to classify the phone sensing context, i.e., 

in pocket (bag) or hand, which is related with the accuracy of sensed data. To recover a 

noise map from incomplete and random samples,  Rana et al. [2013] further studies a 

number of different interpolation and regularization methods, including linear interpolation, 

nearest neighbor interpolation, Gaussian process interpolation and L1-norm minimization 

methods. 

         Modeling citywide noise pollution is actually much more than just measuring the 

intensity of noises, as the measurement of noise pollution also depends on people’s 

tolerance to noises, which changes over time of day. For example, in the night, people’s 

tolerance to noises is much lower than the daytime. A less loud noise in the night may be 

nevertheless considered a heavier noise pollution. Consequently, even if we could deploy 

sound sensors everywhere, diagnosing urban noise pollution solely based on sensor data is 

not enough. Furthermore, urban noises are usually a mixture of multiple sound sources. 

Understanding the composition of noises, e.g., in the evening rush hours, 40 percent of 

noises in a place is from pub music, 30% from vehicle traffic, and 10% from constructions, 

is vital to help tackle noise pollution.  

       Since 2001, New York City (NYC) has opened a platform titled 311 to allow people 

to complain the imperfect of the city by using a mobile app or making a phone call; noise 

is the third largest category of complaints in the 311 data. As each complaint about noises 

is associated with a location, time stamp, and a fine-grained noise category, such as loud 

music or construction noises, the data is actually a result of “human as a sensor” and “crowd 

sensing”, containing rich human intelligence that can help diagnose urban noises. Zheng et 

al. [2014b] infer the fine-grained noise situation (consisting of a noise pollution indicator 

and the composition of noises) of different time of day for each region of NYC, by using 

the 311 complaint data together with social media, road network data, and Points of 

Interests (POIs).  According to the overall noise pollution indicator, we can rank locations 

in different time spans, e.g. 0am-5am weekends and 7pm-11pm in weekends, as illustrated 

in Figure 9 A); the darker the heavier noise pollution. Or, rank locations by a particular 

noise category like Construction, as depicted in Figure 9 B). We can also check the noise 

composition of a particular location changing over time, e.g. Time Square, as shown in 

Figure 9 C). 

 

file:///D:/papers/paper%20since%20join%20MSRA/published%20paper/ACM%20Transaction%20on%20Intelligent%20systems%20and%20techologies/urban%20computing/311.%20http:/nycopendata.socrata.com/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
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Figure 9. Diagnose the noise pollution of NYC 

 

    They model the noise situation of NYC with a three dimension tensor, where the three 

dimensions stand for regions, noise categories, and time slots, respectively. By filling in 

the missing entries of the tensor through a context-aware tensor decomposition approach, 

they recover the noise situation throughout NYC. The information of noise cannot only 

facilitate an individual’s life, e.g., help find quiet place to settle down, but also inform 

governmental officials’ decision making on tackling noise pollutions. 

       

3.4 Urban Computing for Urban Energy Consumption 
The rapid progress of urbanization is consuming more and more energy, calling for 

technologies that can sense city-scale energy cost, improve energy infrastructures, and 

finally save energy consumption.  

              3.4.1 Gas Consumption                 Zhang et al. [2013] proposed a step toward real-

time sensing of refueling behavior and citywide petrol consumption. The method uses a 

‘human as a sensor’ approach by analyzing and drawing inferences from GPS-trajectories 

passively collected by taxicabs. At first, they detect the refueling events, which are visits 

by taxis to gas stations, from the GPS trajectories, as illustrated in the left part of Figure 10. 

The detection of refueling events includes the time spent waiting at the gas station and the 

time spent refueling the vehicle. Secondly, as shown in the middle part of Figure 10, they 

build a tensor with the three dimensions respectively denoting gas stations, day of the week, 

and time of day. Each entry contains the refueling events detected at a particular time slot 

in a particular day and in a particular gas station. For entries which cover enough detected 

refueling events, the time spent in each of these entries is estimated from the distribution 

of the refueling events. For those with few or even without refueling events, they use a 

context aware collaborative filtering approach to solve the data sparsity problem. Finally, 

as depicted in the right part of Figure 10, they treat each gas station as a queue system and 

time spent in the station is used to calculate drivers’ arrival rate, which is the number of 

customers during this period and can indicate the petrol consumption indirectly. Therefore, 

the output is a global estimate of time spent and fuel use at each gas station in each time 

period. Refer to Example 3 in Section 4.3 for more details of the methodology. 

Eco-feedback technologies that provide information on the driving behavior have 

shown to be an effective means to stimulate changes in driving in favor of energy 

conservation and emission reduction. Tulusan et al. [2012] demonstrated that a smartphone 

application can improve fuel efficiency even under conditions where monetary incentives 

are not given, i.e., where the drivers do not pay for fuel. Given the large share of corporate 

cars, findings are also of high practical importance and motivate future research on eco-

driving feedback technologies. Recently, using monetary incentives, some insurance 

companies have been encouraging customers to share driving behaviors recorded by a 

Weekday: 6am-6pmWeekend: 7pm-11pm

B)  Construction

Weekday:0-5am

A) Overall noises C)  Noise of different categories in Time Square
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variety of car-sensor data, like pushing a gas pedal and brake, and making a direction turn. 

The data can be used to estimate a driver’s probability to encounter an accident, therefore 

helping determine the price for next year’s insurance fare. Having such kind of detailed 

driving behavior data of a large number of people will enable us to understand the instant 

energy consumption of a city and analyze the energy cost of a particular route, therefore 

coming up with some solution for energy conservation, e.g., suggesting the route costing 

the least gasses.  

 

 
Figure 10. Crowdsensing urban refueling behavior with GPS-equipped taxis 

 

      Shang and Zheng et al. [2014] instantly inferred the gas consumption and pollution 

emission of vehicles traveling on a city’s road network in current time slot, using GPS 

trajectories from a sample of vehicles (e.g., taxicabs), as illustrated in the Figure 11 A). 

The knowledge cannot only be used to suggest cost-efficient driving routes but also identify 

the road segments where gas has been wasted significantly. In the meantime, the instant 

estimation of the pollution emission from vehicles can enable pollution alerts, and, in the 

long run, help diagnose the root cause of air pollution.  

     They first computed the travel speed of each road segment using the GPS trajectories 

received recently. As many road segments are not traversed by trajectories (i.e., data 

sparsity), a travel speed estimation model is proposed, based on a context-aware matrix 

factorization approach. The model leverages features learned from other data sources, e.g., 

map data and historical trajectories, to deal with the data sparsity problem. A Traffic 

Volume Inference model (TVI) was then proposed to infer the number of vehicles passing 

each road segment per minute. TVI is an unsupervised Dynamic Bayesian Network that 

incorporates multiple factors, such as the travel speed, weather conditions, and 

geographical features of a road. Given the travel speed and traffic volume of a road segment, 

the gas consumption and emission can be calculated based on existing environmental 

theories. 

       Figure 11 B) demonstrates the gas consumption and emission of 𝑁𝑂𝑥  around 

Zhongguancun area, which is a place mixed with many companies and entertainments, in 

the aforementioned three days, respectively. In the time slot from 3pm to 4pm, the time 

before evening rush hours, this area has less gas consumption in the workday than the 

weekend and holiday, because people are still working indoors. When time goes to 

weekends and holidays, many people travel to this region for the purpose of entertainments, 

e.g., go shopping and watching a movie, leading to more energy consumption and emission 

of CO, denoted by red segments. There is a movie theater, a supermarket, and two shopping 

centers located in the region marked by the broken curve.  
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                  A) Goal of the research                B) Some visualizations of the inferred results 

Figure 11. Infer gas consumption and pollution emission from vehicles based on sparse trajectories 

 

                3.4.2 Electricity Consumption            Efficient integration of energy from 

renewable sources and meeting the increased demand resulting from an increase in 

electrification of vehicles and heating, is key to the sustainability of electricity supply. In 

order to optimize residential energy usage, intelligent demand response mechanisms are 

needed to shift energy usage to periods of low demand, or to periods of high availability of 

renewable energy. Intelligent algorithms, implemented at either the device level or at a 

community/transformer level, enable devices to meet individual device and user policies 

as well as stay within community assigned energy usage limits.  

      In [Dusparic et al, 2013], each electric vehicle within a community is controlled by a 

reinforcement learning agent, further supported by a short-term load prediction algorithm 

[Marinescu et al. 2014]. Each agent’s local goals are to minimize the charging price (which 

is dynamic and directly proportional to current energy demand), and to meet desired user 

utility (e.g., have an EV’s battery 80% charged in time for departure). Each agent also has 

a goal to keep the community transformer level under a target limit (by minimizing, for 

example, the number of vehicles charging during peak periods). Demand is dynamically 

re-predicted if real-time monitoring shows deviations of actual from predicted demand. 

Galvan-Lopez et al. [2014] propose an alternative approach, where instead of each vehicle 

agent making its own decisions, a globally optimal charging schedule is evolved using 

genetic algorithms and communicated to the electric vehicles.  In [Harris et al, 2014], 

intelligent set point control algorithms at the transformer level send out signals to 

controllable devices (e.g., EVs or water heaters) indicating either a probability which they 

should use to determine whether they should be charging/on at any particular point, or the 

degree to which each device’s variable power chargers should be turned on. This enables 

fine-grained control of device demand to fill up the gaps between uncontrollable electric 

load and the target transformer load to smooth out overall energy demand.  

       Momtazpour et al. [2013] presented a framework to support charging and storage 

infrastructure design for electric vehicles. A coordinated clustering technique was 

proposed to work with network models of urban environments to aid in placement of 

charging stations for an electrical vehicle deployment scenario. Issues that have been taken 

into account include: (i) prediction of EV charging needs based on their owners' activities; 

(ii) prediction of EV charging demands at different locations in the city, and available 

charge of EV batteries; (iii) design of distributed mechanisms that manage the movements 

of EVs to different charging stations; and (iv) optimizing the charging cycles of EVs to 

satisfy users' requirements, while maximizing vehicle-to-grid profits.   
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3.5 Urban Computing for Social Applications 
Though there are already many social networking services on the Internet, in this section 

we focus on introducing location-based social networks (LBSN), which are formally 

defined as follows in [Zheng 2011a and 2012a]: 

       A location-based social network (LBSN) does not only mean adding a location to 

an existing social network so that people in the social structure can share location-

embedded information, but also consists of the new social structure made up of 
individuals connected by the interdependency derived from their locations in the 

physical world as well as their location-tagged media content, such as photos, video, 

and texts. Here, the physical location consists of the instant location of an individual 
at a given timestamp and the location history that an individual has accumulated in a 

certain period. Further, the interdependency includes not only that two persons co-
occur in the same physical location or share similar location histories but also the 

knowledge, e.g., common interests, behavior, and activities, inferred from an 

individual’s location (history) and location-tagged data. 
      LBSNs bridge the gap between users’ behavior in digital and physical worlds 

[Cranshaw 2010], which well matches the nature of urban computing (as presented in 

Section 2.3). In a location-based social network, people can not only track and share the 

location-related information of an individual, but also leverage collaborative social 

knowledge learned from user-generated and location-related content, such as check-ins, 

GPS trajectories and geo-tagged photos [Zheng et al. 2011c and 2012b]. Examples of 

LBSNs include the widely-used Foursquare and a research prototype called GeoLife 

[Zheng et al. 2008c; 2008d; 2009a; 2010d]. With LBSNs, we can understand users and 

locations, respectively, and explore the relationship between them. More details about 

LBSNs can be found in [Zheng 2011a; 2011e] and a survey on recommendations in LBSNs 

[Bao et al. 2014]. 

          1) Estimate user similarity: An individual’s location history in the real world implies, 

to some extent, her interests and behaviors. Accordingly, people who share similar location 

histories are likely to have common interests and behaviors. The similarity between users 

inferred from their location histories can enable friend recommendations [Li et al 2008], 

which connect users with similar interests even when they may not have known each other 

previously, and community discovery [Hung et al. 2009] that identifies a group of people 

sharing common interests. To better estimate the similarity between users, more 

information, such as the visiting sequences between locations, the geospatial granularity of 

a location, and the popularity of a location, are considered in [Zheng et al. 2010d]. In 

addition, in order to be able to calculate the similarity of users living in different cities, i.e., 

having little geospatial overlaps in users’ location histories, Xiao et al. [2010 and 2012] 

extended Zheng’s research from physical locations into the semantic space of locations by 

considering the categories of points of interests in the location visited by a user. 

          2) Finding local experts in a region [Zheng et al. 2009c]: With users’ locations, we 

are able to identify the local experts who have richer knowledge about a region (or a topic 

like shopping) than others. Their travel experiences, e.g., the locations where they have 

been, are more accountable and valuable for travel recommendation. For instance, local 

experts are more likely to know about high-quality restaurants than some tourists.  

         3) Location recommendations: Finding the most interesting locations in a city is a 

general task that a tourist wants to fulfill when traveling to an unfamiliar city [Zheng et al. 
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2009c]. However, the interest level of a location does not depend on the number of people 

who have visited the location but also these people’s travel knowledge. For example, the 

most frequently-visited location in a city could be its railway station or airport which might 

not be an interesting location recommendation. On the contrary, some locations attract 

experienced people (i.e., with rich travel knowledge) may be truly interesting. The problem 

is then how to determine an individual’s travel experience. As shown in Figure 12 A), 

Zheng et al. [2009c] formulated a bipartite graph between users and locations, and employ 

a HITS (Hypertext Induced Topic Search)-based model to infer the interest level of a 

location and the travel knowledge of a user (as illustrated in Figure 12 B). The general idea 

is that users’ travel experiences and the interest level of a location have a mutual 

reinforcement relationship. More specifically, a user’s knowledge can be represented by 

the summation of the interests of the locations the user has visited; in turn, the interest of a 

location is represented by the summation of the knowledge of the users who have visited 

this location. 

 
Figure 12. Inferring the most interesting places and most experienced users 

 

In some scenarios, we can consider a user’s preferences (e.g., like Italian food and watch 

movies) and contexts (like current location and time) when suggesting location 

recommendations [Ye et al. 2011; Liu et al. 2013]. Some simple method is to formulate a 

user-location matrix where each row denotes a user, each column means a location, and 

each entry stands for the number of visits of a particular user in a particular location. Then 

some collaborative filtering methods can be used to fill in the entries without a value. This 

kind of method calculates the similarity between users solely based on the two rows 

denoting the two users’ location histories, missing useful information, such as the 

aforementioned visiting sequences between locations. Considering rich information, Zheng 

et al [2010e] incorporated the user similarity they inferred in paper [Li et al. 2008] into a 

user-based CF model to infer the missing value in the user-location matrix. Though having 

a deeper understanding of user similarity, the method suffers from the increasing scale of 

users since the model needs to calculate the similarity between each pair of users. To 

address this issue, location-based collaborative filtering was proposed in [Zheng et al. 

2011d]. This model computes the correlation between locations based on the location 

histories of the users visiting these locations [Zheng et al. 2009b]. The correlation was then 

used as a kind of similarity between locations in an item-based CF model. Given the limited 

geographical space (i.e., the number of locations is limited), this location-based model is 

more practical for a real system.  

      As a user can only visit a limited number of locations, the user-locations matrix is very 

sparse, leading to a big challenge to traditional collaborative filtering-based location 

recommender systems. The problem becomes even more challenging when people travel 
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to a new city they have not visited. To this end, Bao et al. [2012] presented a location-

based and preference-aware recommender system that offers a particular user a set of 

venues (such as restaurants and shopping malls) within a geospatial range with the 

consideration of both: 1) user personal preferences, which are automatically learned from 

her location history and 2) social opinions, which are mined from the location histories of 

the local experts. This recommender system can facilitate people’s travel not only near 

their living areas but also to a city that is new to them.  

          Itinerary planning: Sometimes, a user needs a sophisticated itinerary conditioned by 

the user’s travel duration and departure place. The itinerary could include not only stand-

alone locations but also detailed routes connecting these locations and a proper schedule, 

e.g., the typical time of day that most people reach the location and the appropriate time 

length that a tourist should stay there. Yoon et al. [2010; 2011] planned a trip in terms of 

the collective knowledge learned from many people’s GPS trajectories. Wei et al. [2012] 

learned the most likely route traveling between two query points through learning from 

many check-in data.   

         Location-activity recommender: This recommender provides a user with two types 

of recommendations: 1) the most popular activities that can be performed in a given 

location and 2) the most popular locations for conducting a given activity, such as shopping. 

These two categories of recommendations can be mined from a large number of users’ 

trajectories and location-tagged comments. To achieve the two goals, Zheng et al. [2010f] 

proposed a context-aware collaborative filtering model, which was solved by a matrix 

factorization method (refer to Section 4.4.2 for details). Furthermore, Zheng et al. [2010a; 

2012d] extended the location-activity matrix into a tensor by considering users as the third 

dimension. By applying a context-aware tensor decomposition method, a personalized 

location-activity recommendation was proposed (Section 4.4.3 offers details).  

        Life patterns and styles understanding: The social media data, especially the geo-

tagged twitters, photos, and check-ins, cannot only help understand an individual’s life 

patterns [Ye et al. 2009] but also a city’s dynamics [Cranshaw 2012], topics [Yin et al. 

2011], behavior patterns [Wakamiya et al. 2012], or lifestyles [Yuan et al. 2013a] when 

used aggregately. We can also compute the similarity between two cities according to the 

social media generated in the cities. 

 

3.6 Urban Computing for Economy 
The dynamics of a city, e.g., human mobility and the number of changes in a POI category, 

may indicate the trend of the city’s economy. For instance, the number of movie theatres 

in Beijing kept on increasing from 2008 to 2012, reaching 260. This could mean that more 

and more people living in Beijing would like to watch a movie in a movie theater. On the 

contrary, some category of POIs is going to vanish in a city, denoting the downturn of the 

business. Likewise, the human mobility could indicate the unemployment rate of some 

major cities, therefore, helping predict the trend of a stock market. 

       Human mobility, combined with POIs, can also help the placement of some businesses. 

Karamshuk et al. [2013] studied the problem of optimal retail store placement in the context 

of location-based social networks. They collected human mobility data from Foursquare, 

and analyzed it to understand how the popularity of three retail store chains in New York 

is shaped, in terms of number of check-ins. A diverse set of data mining features were 

evaluated, modeling spatial and semantic information about places and patterns of user 

movements in the surrounding area. As a result, among those features, the presence of user 

attractors (i.e., train station or airport) as well as retail stores of the same type to the target 
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chain (i.e., coffee shop or restaurant) encoding the local commercial competition of an area, 

are the strongest indicators of popularity. 

       Combing more data sources, we can even predict the ranking of real estates. Fu et al. 

[2014] predicted the ranking of a residential real estate in a city at a future time according 

to their potential values inferred from a variety of data sources, such as human mobility 

data and urban geography, currently observed around the real estate. Here, ‘value’ means 

the ability to increase faster in a rising market and decreases more slowly than others in a 

falling market, quantified by discretizing the increasing or decreasing percentage over its 

previous price into five levels (R1-R5), where R1 stands for the best and R5 denotes the worst. 

The rank is of great importance to people when settling down or allocating capital 

investment. The problem is difficult, however, as the ranking depends on many factors, 

which vary in location non-linearly and may even change over time. To address this issue, 

we first identify a set of discriminative features for each house by mining the geographic 

data, e.g., road networks and point of interest (POIs), and traffic data around a real estate. 

We then train a pair-wised learning-to-rank model by feeding a list of features-ranking 

pairs into an artificial neural network. A metric learning algorithm is also applied to 

identify the top-10 most influential features affecting the ranking, implicitly revealing the 

important factors determining the value of a real estate.  

 

 
3.7 Urban Computing for Public Safety and Security 

Large events, pandemics, severe accidents, environmental disasters, and terrorism 

attacks pose additional threats to public security and order. The wide availability of 

different kinds of urban data provides us with the ability, on one hand, to learn from history 

the knowledge that can handle the aforementioned threats correctly, on the other hand, to 

timely detect them or even predict them in advance. 

3.7.1 Detecting Traffic Anomalies.          Traffic anomalies in urban areas could be 

caused by accidents, control, protests, sports, celebrations, disasters and other events. The 

detection of traffic anomalies can help disperse congestions, diagnose unexpected events, 

and facilitate people’s drive. According to the surveys on anomaly detection [Chandola 

2009; Hodge 2004], there are four major categories of methods: classification-based, 

clustering-based, distanced-based, and statistical-based. In this article, we only introduce 

the latter two categories in the setting of urban traffic.  

1) Distance-based methods: This category of methods represents a spatial object (e.g., 

a region, or a road segment, or a link connecting two regions) by a set of features (extracted 

from traffic data), which is then used to calculate the distance between two spatial objects. 

The spatial objects with a farther distance to others are considered outliers. Some 

thresholds, like three times of the standard deviation, are usually employed to identify 

outliers.  

Liu et al. [2011] partitioned a city into disjointed regions with major roads and glean 

the anomalous links between two regions according to the traffic of vehicles traveling 

between the two regions. They divided time of day into time bins and identify for each link 

three features, consisting of number of vehicles traveling the link in a time bin (#Obj), 

proportion of the these vehicles among all vehicles moving into the destination region 

(𝑃𝑐𝑡𝑑 ), and that moving out of the origin region (𝑃𝑐𝑡𝑜 ). As shown in Figure 13 A), 

regarding link 𝑎 → 𝑏, #Obj=5, 𝑃𝑐𝑡𝑑=5/14 and 𝑃𝑐𝑡𝑜=5/9. The three features of a time bin 

were respectively compared with those in the equivalent time bins of previous days to 

calculate the minimum distort of each feature (i.e., minDistort #Obj, minDistort 𝑃𝑐𝑡𝑑, and 

http://en.wikipedia.org/wiki/Pandemic
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minDistort 𝑃𝑐𝑡𝑜). Then, the link of the time bin can be represented in a 3D-dimension 

space, with each dimension denoting the minimum distort of a feature, as depicted in Figure 

13 B). To normalize the effect of variances along different directions, the Mahalanobis 

distance was used to measure the most extreme points, which were regarded as outliers. 

Following the aforementioned research, Sanjay et al. [2012] proposed a two-step 

mining and optimization framework to detect traffic anomalies between two regions and 

explain an anomaly with the traffic flows passing the two regions. As illustrated in Figure 

13 D), an anomalies link 𝐿1 was found between two regions. However, the problem may 

not lie in the two regions. On April 17th, 2011, traffic in Beijing had been diverted away 

from Tiananmen Square because of the Beijing marathon. Thus the normal traffic route 

(shown as dotted path) from region  𝑟1  to the Beijing South Railway Station in 𝑟2  was 

diverted and the dashed (green) path witnessed excess traffic. In short, the traffic flow on 

the green path leads to the anomaly. In the methodology, given a link matrix like that shown 

in Figure 12 3), they first used a PCA (Principal Component Analysis) algorithm to detect 

some anomalous links, which were represented by a column vector 𝑏 with 1 denoting an 

anomaly detected on the link. An adjacent link-route matrix 𝐴 was formulated based on the 

trajectories of vehicles, as illustrated from Figure 13 D) to G). Each entry of the matrix 

denotes whether a route passes a link; 1 means yes, 0 denotes no. For instance, route 𝑝1 

passes 𝑙1 and 𝑙2. Then, the relationship between anomalous links and routes was captured 

by solving the equation, 𝐴𝑥 = 𝑏 , where 𝑥  is a column vector denoting which paths 

contribute to the emergency of these anomalies shown in 𝑏 . Using 𝐿1  optimization 

techniques, the 𝑥 can be inferred.  

 

 
Figure 13. Detecting anomalies from urban traffic based on distance 

 

Pan and Zheng et al. [2013] identified traffic anomalies according to drivers’ routing 

behavior on an urban road network. Here, a detected anomaly is represented by a sub-graph 

of a road network where drivers’ routing behaviors significantly differ from their original 

patterns. They then try to describe the detected anomaly by mining representative terms 

from the social media that people posted when the anomaly happened. The system for 
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detecting such traffic anomalies can benefit both drivers and transportation authorities, e.g., 

by notifying drivers approaching an anomaly and suggesting alternative routes, as well as 

supporting traffic jam diagnosis and dispersal. 

 

2) Statistic-based: The underlying principle of a statistical-based outlier detection 

technique is: “an anomaly is an observation which is suspected of being partially or wholly 

irrelevant because it is not generated by the stochastic model assumed” [10]. It is based on 

the key assumption: Normal data instances occur in high probability regions of a stochastic 

model, while anomalies occur in the low probability regions of the stochastic model. 

Statistical techniques fit a statistical model (usually for normal behavior) to the given data 

and then apply a statistical inference test to determine if an unseen instance belongs to this 

model or not. Instances that have a low probability from the applied test statistic are 

declared as outliers. 

Pang et al. [2011 and 2013] adapted likelihood ratio test (LRT), which have previously 

been mostly used in epidemiological studies, to describe traffic patterns. They partitioned 

a city into uniform grids and count the number of vehicles arriving in a grid over a time 

period. The objective is to identify contiguous set of cells and time intervals which have 

the largest statistically significant departure from expected behavior (i.e., the number of 

vehicles). The regions whose log-likelihood ratio statistic value drops in the tail of χ2  

distribution are likely to be anomalous.  

 

     3.7.2 Disaster Detection and Evacuation.                The Great East Japan Earthquake 

and the Fukushima nuclear accident cause large human population movements and 

evacuations. Understanding and predicting these movements is critical for planning 

effective humanitarian relief, disaster management, and long-term societal reconstruction.  

Lee, R., and Sumiya [2010] aimed to detect the events, like environmental disasters, from 

geo-tagged tweet data. Song et al. [2013] constructed a large human mobility database that 

stores GPS records from mobile devices used by approximately 1.6 million people 

throughout Japan from 1 August, 2010 to 31 July, 2011. By mining this dataset, the short-

term and long-term evacuation behaviors of individuals during this disaster were 

discovered. A probabilistic model was trained by the discovered evacuations and then 

apply to infer the population mobility in other cities impacted by the disasters. The research 

can inform the decision making in future disaster relief and management. 

 

4. TYPICAL TECHNOLOGY 
In this section, we discuss four categories of techniques that are frequently used in urban 

computing: 1) urban sensing, 2) urban data management, 3) knowledge fusion across 

heterogeneous data, 4) dealing with data sparsity, and 5) urban data visualization.  

 

4.1 Urban Sensing and Data acquisition 
The advances in sensing and data acquisition technologies have resulted in massive data in 

our cities, from traffic flow to air quality, from social media to geographic data.  Here, we 

categorize the existing data acquisition technologies for urban computing into three folds: 

1) traditional sensing and measurement, 2) passive crowd sensing, and 3) participatory 

sensing [Goldman et al. 2009], which will be detailed in the later sections respectively.  

The first fold of technologies collects data through installing sensors dedicated to some 

applications. For example, burying loop sensors in roads for detecting traffic volume on 

road surfaces. The second fold of technologies leverages existing infrastructures to 
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passively collect the data generated by crowds. For instance, wireless cellular networks are 

built for mobile communication between individuals. However, the mobile phone signal of 

a large number of people can be used to predict traffic conditions and improve urban 

planning. In the third fold, people actively obtain the information around them and 

contribute their own data to formulate collective knowledge that can solve a problem, in 

short, human as a sensor. Representative examples include detecting traffic congestion by 

aggregating the reports from a large number of people, or probing the temperature 

throughout a city using the data shared by individual mobile phones. The major difference 

between the latter two folds of technologies is that people know what there are contributing 

and what the purpose for the sharing is in the third category (i.e., actively vs. passively).  

As the first fold of technology has already been widely used, we focus on introducing the 

latter two in this subsection.  

 
4.1.1 Passive Crowd Sensing.          To enable our modern lives, many advanced 

infrastructures have been built in cities, e.g., the ticketing system of public transportation 

and the wireless cellular networks. While these infrastructures were designed for other 

purposes, they can be used to sense city dynamics as well. The data produced by these 

infrastructures can also be analyzed for accomplishing other goals, such as to improve 

urban planning and ease traffic congestion.  

 Sensing City Dynamics with GPS-Equipped Vehicles:  Vehicles, such as taxis, buses, 

and private cars, have been equipped with a GPS sensor in recent years for different 

reasons, e.g., security, management, dispatch, and insurance measurement. The GPS 

sensors and communication modules enable these vehicles to report on their current 

location as well as other information to a backend center over a certain period. In fact, 

these GPS-equipped vehicles can be regarded as mobile sensors continually probing 

the traffic flow on road surfaces. The data acquired in these infrastructures also 

represents the city-wide human mobility patterns, e.g., if we know the pick-up and 

drop-off points of each taxi trip. A series of research has been done by acquiring the 

trajectory data of taxis, e.g., a smart driving direction service [Yuan and Zheng et al. 

2010a; 2011b; 2013b], sensing the real-time gas consumption [Zhang et al. 2013], and 

the detection of anomalies in a city [Liu et al. 2011; Chawla et al. 2012; Pan et al. 

2013; Pang et al. 2011 and 2013]. GPS-equipped buses also become prevalent in 

modern cities, majorly used for predicting the arrival time at bus stops. The GPS 

trajectory of these buses was also applied to traffic condition analysis [Bejan 2010] 

and bus route optimization [Bastani et al. 2011]. Some private vehicles are also 

embedded with a GPS sensor by insurance companies. The generated data, including 

GPS coordinates and other driving behaviors, are employed to measure the risk of car 

accidents that would happen to a driver, therefore, determining an insurance package 

for the driver. The data can also be used to analyze the gas cost on different routes and 

educate drivers with eco-drive behaviors.  

 Data Acquisition through Ticketing Systems of Public Transportation: A diversity of 

RFID-based cards has been used for charging people’s commute in public 

transportation systems, such as subways and buses. People usually need to swipe their 

card when entering a subway station or getting on a bus. Sometimes, they would also 

need a swipe at an exit or when getting off a bus. A transaction records consists of the 

money charged, timestamp, and location information, which may be a station, a dock, 

and a bus stop, or just the ID of a bus. If processed correctly, the origin and destination 

of each card holder can be inferred from the transaction records. As a result, we can 

model the city-wide human mobility [Lathia and Capra 2011a; 2011b]. 
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 Data Acquisition through Wireless Communication Systems: Wireless communication 

systems, e.g., the cellular networks and Wi-Fi, have been widely deployed in cities. 

The information that records the access of people to these wireless networks is actually 

another kind of footprints. For example, Call Detailed Records (CRD) have been 

widely used in traffic and human mobility modeling [González et al. 2008; Candia et 

al. 2012]. A review of urban computing for mobile phone traces can be found in [Jiang 

et al. 2013]. 

 Data Acquisition through Social Networking Services: The advances in online social 

networking services have resulted in a large amount of social media, such as tweets, 

photos and videos. Sometimes, social media is even associated with location 

information, e.g., a check-in at a venue or geo-tagged photos.  The social media posted 

by users may describe the events that are happening around them, for a natural disaster 

or a car accident. The real-time analysis of social media generated by massive users 

would help detect the anomalous events happening in a city. The geo-tagged social 

media may also reflect human mobility patterns in urban spaces, therefore enabling 

some useful applications, such as travel recommendations [Wei et al. 2012; Bao et al. 

2012 and 2014; Yoon et al. 2010 and 2011] and location choosing for a business 

[Karamshuk et al. 2012].  

 

        4.1.2 Participatory Sensing.          Thanks to the widespread adoption of powerful and 

net- worked (i.e., Internet-enabled) handheld devices, citizens are now taking a more active 

role in producing urban data. This trend has allowed a new category of applications to 

surface, in which information about our cities is collected by participants and is collectively 

used to offer services to citizens. We identify two main streams of work under the theme 

of participatory sensing: human crowd-sensing and human crowd-sourcing. 

 Human crowd-sensing. With this term, we refer to the case of users willingly 

contributing information as gathered from sensors embedded in the users’ own devices. 

This can be, for example, GPS data from a user’s mobile phone, as already explored 

in the Tiramisu project [Zimmerman et al. 2011], which is then used to estimate real-

time bus arrivals. GPS data from users’ personal devices is also exploited in traffic 

and navigation applications like Waze. In both cases, users simply need to start the 

application when taking a bus/car; without any further burden on their side, the 

application open on their phone passively contributes GPS data, which is then 

aggregated and analysed for the application-specific goal (e.g., offering real time bus 

arrival to other users, route computation). GPS data is only one example: users have 

been willingly contributing noise data, as picked up by the phone's microphone, along 

with the GPS location, so to create urban noise maps [D’Hondt et al. 2011; Rana et al. 

2010 and 2013]. Sensing and mapping of environmental data, using personal sensing 

kits like SmartCitizen, is also gaining momentum: these devices can sense air quality, 

temperature, sound, humidity, light, CO2 and NO2. They are sufficiently cheap to be 

privately owned, thus paving the way for having hundreds or thousands of these 

devices spread around an urban area, potentially offering a very fine-grained spatio-

temporal footprint on the liveability of our cities. As this human-collected data is 

intrinsically linked to where the people carrying the devices are, research is required 

to quantity bias in the data, so to make explicit the extent to which the collected data 

is representative of actual environmental conditions [Mashhadi et al. 2013]. 

 Human crowd-sourcing. With this term, we refer to scenarios where users are 

proactively engaged in the act of generating data, other than simply switching on/off 
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an application or device. Examples include: users generating reports on accidents, 

police traps, or any other road hazards, so to give other users in the area a 'heads-up' 

(Waze offers its users the ability to source this rich information on top of the sensed 

GPS data it already tracks from their mobile devices); cyclists annotating bike-friendly 

routes and reporting potholes and other types of problems that might affect fellow 

riders [Priedhorsky et al. 2010]; citizens turning into cartographers, to create open 

maps of their cities [Haklay and Weber 2008], or surveyors, to report problems of local 

impact, so that councils can take an action. The cognitive effort required in all these 

cases is much higher than with human crowd-sensing, thus leading to open research 

questions in terms of users’ motivation and long-term engagement that have only 

started to be explored [Hristova et al. 2013; Panciera et al. 2010]. 

 

4.2 Urban Data Management Techniques 
The data generated in urban spaces is usually associated with a spatial or spatio-temporal 

property. For example, road networks and POIs are the frequently-used spatial data in urban 

spaces; meteorological data, surveillance videos, and electricity consumption are temporal 

data (also called time series, or stream). Other data sources, like traffic flows and human 

mobility, have spatio-temporal properties simultaneously. Sometimes, the temporal data 

can also be associated with a location, then becoming a kind of spatio-temporal data. e. g. 

the temperature of a region and the electricity consumption of a building. Consequently, 

good urban data management techniques should be able to deal with spatial and spatio-

temporal data efficiently.  

      In addition, an urban computing system usually needs to harness a variety of 

heterogeneous data. In many cases, these systems are required to quickly answer users’ 

instant queries, e.g. predicting traffic conditions and forecasting air pollution. Without the 

data management techniques that can organize multiple heterogeneous data sources, it 

becomes impossible for the following data mining process to quickly learn knowledge from 

these data sources. For instance, without an efficient spatio-temporal indexing structure that 

well organizes POIs, road networks, traffic and human mobility data in advance, the solely 

feature extraction process of U-Air project [Zheng et al. 2013b] will last for a few hours. 

The delay will fail this application in telling people the air quality of a city every hour.   

     This section introduces three common data structures (i.e., stream, trajectory, and graph 

data) that are widely used in urban computing applications and the techniques for managing 

the three data structures. We also present some examples that integrate different data 

sources into a hybrid index.  

 

          4.2.1 Stream and Trajectory Data Management.        Stream data, such as the 

temperature, electricity consumption, and video of surveillance cameras is widely available 

in urban spaces. Managing and querying stream data have been studied intensively in past 

decade [Aggarwal 2007; Lukasz 2010], with quite a few mature data stream management 

systems (DSMS) like StreamInsight that have been built. A DSMS is a computer program 

to manage continuous data streams, similar to a database management system (DBMS), 

which is, however, designed for static data in conventional databases. In contrast to a 

DBMS, a DSMS executes a continuous query that produces new results as long as new data 

arrive at the system.  Example queries include calculating the average temperature of 

buildings whose electricity consumption is higher than a threshold. One of the biggest 

challenges for a DSMS is to handle potentially infinite data streams using a fixed amount 

of memory and no random access to the data. There are two classes of approaches to limit 
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the amount of data in one pass. One is compression techniques that try to summarize the 

data; the other is window techniques that try to portion the data into (finite) parts.  

       A spatial trajectory is a trace generated by a moving object in geographical spaces, 

usually represented by a series of chronologically ordered points, e. g. 𝑝1 → 𝑝2 → ⋯ → 𝑝𝑛, 

where each point consists of a geospatial coordinate set and a timestamp such as 𝑝 =
(𝑥, 𝑦, 𝑡). Many kinds of data generated in urban spaces can be formed as trajectories, from 

GPS traces of vehicles to a user’s footprint (such as check-ins) in a location-based social 

network, from the call detail records of a mobile phone to the transaction records of a credit 

card. Though trajectory data can be regarded as a special case of stream data, the 

geographical position of each entry does make a difference and introduce many new 

problems calling for new techniques (refer to [Zheng 2011f] for details):   

1) Data reduction techniques for trajectories: Generally, the continuous movement of 

an object is recorded in an approximate form as discrete samples of location points. 

A high sampling rate of location points generates accurate trajectories, but will 

result in a massive amount of data leading to enormous overhead in data storage, 

communications, and processing. Thus, it is vital to design data reduction 

techniques that compress the size of a trajectory while maintaining the utility of the 

trajectory. There are two major types of data reduction techniques running in a batch 

mode after the data is collected (e.g., Douglas-Peucker algorithm [Douglas and 

Peucker 1973]) or in an online mode as the data is being collected (such as the 

sliding window algorithm [Keogh et al. 2001; Maratnia 2004]). To evaluate a 

trajectory reduction technique, we usually consider the following three metrics: 

processing time, compression rate, and error measure (i.e., the deviation of an 

approximate trajectory from its original presentation). Recent research PRESS 

[Song et al. 2014] has given the solution to the trajectory reduction on road networks. 

PRESS separates the spatial representation of a trajectory from the temporal 

representation, proposing a hybrid spatial compression algorithm and error bounded 

temporal compression algorithm to compress the spatial and temporal information 

of a trajectory respectively.  

        In contrast to trajectory reduction algorithms that only focus on spaito-

temporal information of a trajectory, Chen et al. [2009] proposed to simplify a 

trajectory by considering both the shape skeleton and the semantic meanings of the 

trajectory. The algorithm is motivated by people’s needs in a trajectory-sharing 

social networking site, like GeoLife [Zheng et al. 2008c and 2010d]. When 

browsing a trajectory (probably standing for a travel route) shared by a user, the 

places where the user stayed, took photos, or changed moving directions 

significantly, etc., would be more significant than other points in presenting the 

semantic meanings of the trajectory. Consequently, in this kind of trajectory sharing 

systems, GPS points with an important semantic meaning should be given a higher 

weight when choosing representative points for a simplified trajectory. 

2) Noise filtering techniques for trajectories: A trajectory is usually generated with 

occasional outliers or some noisy points caused by the poor signal of location 

positioning systems. As a result, techniques for filtering the noisy points are needed 

for preprocessing spatial trajectories. General methods include mean and median 

filtering, the Kalman filter, and the particle filter. Refer to Chapter 1 of the book 

[Zheng and Zhou, 2011f] for details. 

3) Techniques for indexing and query trajectories: Querying the current location of a 

moving object has been studied extensively in moving object databases. The 
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commonly used techniques include, 3DR-Tree [Theodoridis et al. 1996] and MR-

Tree [Xu et al. 1999]. Sometimes, we need to search for historical trajectories 

satisfying certain criteria, e.g., retrieving the trajectories of tourists passing a given 

region and within a time span (i.e., a spatio-temporal range query [Wang and Zheng 

et al. 2008]), or taxi trajectories that pass a crossroad (i.e., a point query), or the 

trajectories that are similar to a query trajectory [Chen et al. 2010; Tang et al. 2011] 

(i.e., a trajectory query). See more techniques from Chapter 2 of [Zheng 2011f]. 

4) Techniques dealing with uncertainty of a trajectory: Positioning devices are 

inherently imprecise, resulting in some uncertainty with regards to acquired 

locations of a moving object. Moreover, objects move continuously while their 

locations can only be updated at discrete times. To save energy consumption and 

communication bandwidth, the time interval between two updates could exceed 

several minutes or hours, leaving the location of a moving object between two 

updates uncertain. For example, as shown in Figure 14 A), the time interval between 

two sampling points of a GPS-equipped taxi could be a few minutes, therefore 

having multiple possible paths traveling through the three sampled points.  

       Map-matching is to infer the path that a moving object like a vehicle has 

traversed on a road network based on the sampled trajectory. Map-matching 

techniques dealing with high-sampling rate trajectories have already been 

commercialized in personal navigation devices, while those for low-sampling-rate 

trajectories [Lou et al. 2009] are still considered challenging. According to the result 

reported in [Yuan et al. 2010b], given a trajectory with a sampling rate around 2 

minutes per point, the highest accuracy of a map-matching algorithm is about 70%.  

       When the time interval between consecutive sampling points becomes even 

longer (e.g., the interval between a user’s two consecutive check-ins could be a few 

hours and that for a bird’s trace could be almost 1 day), existing map-matching 

algorithms do not work very well any longer. To address this issue, Wei et al. [2012] 

proposed to construct the most likely route passing a few sampled points based on 

many uncertain trajectories. For instance, as illustrated in Figure 14 C), if we put 

together the check in data of many users, the uncertain route shown in Figure 14 B) 

could become certain, i.e., “uncertain + uncertain  certain”.  

       Another branch of research is to predict a user’s destination based on a partial 

trajectory [Krumm et al. 2006; Xue et al. 2013]. Here, a user’s destination is 

uncertain at the very beginning and gradually becomes certain when a part of the 

trip has been traveled. A user’s and other people’s historical trajectories as well as 

other information, such as the land use of a location, can be used in destination 

prediction models.   

 

           
 A) Taxi and bird’s traces                B) A user’s check-in data                 C) Check-in data of many users  

Figure 14. Reducing the uncertainty of a trajectory 
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5) Trajectory pattern mining: One branch of research is to find the sequential patterns 

from trajectories. Here, a sequential pattern means a certain number of moving 

objects traveling a common sequence of locations in similar travel time. 

Additionally, the locations in a travel sequence do not have to be consecutive. For 

instance, two trajectories 𝐴 and 𝐵, 

                           𝐴: 𝑙1
1.5ℎ
→  𝑙2

1ℎ
→ 𝑙7

1.2ℎ
→  𝑙4.     𝐵: 𝑙1

1.2ℎ
→  𝑙2

2ℎ
→ 𝑙4,  

share a common sequence 𝑙1 → 𝑙2 → 𝑙4, as the visiting orders and travel times are 

similar (though 𝑙2 and 𝑙4 is not consecutive in trajectory 𝐴). This is different from 

the longest common subsequence problem (LCSS) due to the temporal dimension. 

Giannotti et al [2007] is the first research targeting at this problem. Xiao et al. [2010 

and 2012] proposed a graph-based sequence matching algorithm to find the 

sequential pattern shared by two users’ trajectories. The sequential patterns were 

then used to estimate the similarity between two users.   

       Another branch of research is to discover a group of objects that move together 

for a certain time period, such as flock [Gudmundsson et al. 2004 and 2006], convoy 

[Jeung et al. 2008a; 2008b], swarm [Li et al. 2010], traveling companion [Tang et 

al. 2012 and 2013], and gathering [Zheng et al. 2013b and 2014]. These concepts, 

which we refer to as group patterns, can be distinguished based on how the “group” 

is defined and whether they require the time periods to be consecutive. Specifically, 

a flock is a group of objects that travel together within a disc of some user-specified 

size for at least k consecutive timestamps. A major drawback is that a circular shape 

may not reflect the natural group in reality, which may result in the so-called lossy-

flock problem [Jeung et al. 2008a]. To avoid rigid restrictions on the sizes and 

shapes of the group patterns, the convoy is proposed to capture generic trajectory 

pattern of any shape and extent by employing the density-based clustering. Instead 

of using a disc, a convoy requires a group of objects to be density-connected to each 

other during k consecutive time points. While both flock and convoy have strict 

requirement on consecutive time period, Li et al [2010] proposed a more general 

type of trajectory pattern, called swarm, which is a cluster of objects lasting for at 

least k (possibly non-consecutive) timestamps. In contrast to flock, convoy, and 

swarm that require a group pattern to contain the same set of individuals during its 

lifetime, gathering patterns allows members to enter and leave this group any time 

as long as a certain number of members can stay for a certain time period. This is 

more realistic as different people may join and leave an event frequently in a 

practical group event, such as a business promotion. 

 

                4.2.2 Graph Data Management.                    Graph is another kind of data format 

that is frequently used to represent urban data, such as road networks, subway systems, 

social networks, and sensor networks.  Static graph data management [Angles and Gutierrez 

2008] has been studied intensively in database areas for years with many mature 

management systems available. In urban computing, graphs are usually associated with a 

spatial property, resulting in many spatial graphs. For example, the node of a road network 

has a spatial coordinate and each edge denoting a road segment has a spatial length. In 

many situations, these spatial graphs also contain temporal information. For instance, the 

traffic volume traversing a road segment changes over time, and the travel time between 

two landmarks is time dependent (e.g., Figure 6 A)). The structure of such a graph may also 

change over time. For instance, a traffic control may block the traffic flow between two 

locations, therefore temporarily removing the edge between the two locations. We call this 
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kind of graphs a spatio-temporal graph (ST-graph) [Hong and Zheng et al. 2014].  Different 

from a time-evolving graph which is usually used to represent a social network whose 

structures and properties also change over time, a ST-graph has a spatial position for each 

node, resulting in a spatial distance between two nodes of the graph. The ST- graph can be 

generated by projecting dynamic flow data onto a spatial graph, e.g., projecting the GPS 

trajectories of vehicles or call detail records of mobile phone users onto a road network. 

Other examples of spatio-temporal graphs are sensor networks, location-based social 

networks, and vehicle-to-vehicle networks, where the location of a node (e.g., a user or a 

vehicle) can change over time.  

      While managing spatio-temporal graphs effectively is very important to support the 

knowledge discovery process in urban computing, the corresponding data management 

techniques are somehow missing and yet to explore (e.g., searching a ST-graph for some 

sub-graphs with total traffic volume above a threshold, or continuously finding the top-k 

clusters of spatially close nodes with relatively frequent communication among each other 

in a ST-graph). This may be the good news for researchers who are interested in graph data 

and spatial data management. Existing research majorly focuses on sub-graph pattern 

mining [Zheng et al. 2011b] and time dependent routing [Yuan et al. 2010a] on a spatio-

temporal graph. For instance, the example (in Section 3.1.1) that gleans the problematic 

design in a city’s road network according to human mobility data was formulated as a sub-

graph pattern mining problem on a spatio-temporal graph. Recent research [Hong and 

Zheng et al. 2014] has started to detect from a spatio-temporal graph some black holes (or 

volcanos), which represent regions with the streaming in traffic flow much larger than that 

streaming out. Sun et al. [2014] aimed to answer a spatial-temporal aggregate query in a 

location-based social network. Example queries include finding the top-k tourist attractions 

around a user that are most popular in the past three months.  

 

               4.2.3 Hybrid Indexing Structures.              In an urban computing scenario, we 

usually need to harness a variety of data and integrate them into a data mining model (see 

next section for details). This is calling for hybrid indexing structures that can well organize 

different data sources.  

      For example, in many applications [Zheng et al. 2013b; Yuan et al. 2012a], we need to 

use POIs, road networks, traffic, and human mobility data simultaneously. Figure 15 

presents a hybrid indexing structure, which combines a spatial index, hash tables, sorted 

lists, and an adjacency list. Specifically, a city is partitioned into grids by using a quad-tree-

based spatial index. Each leaf node (grid) of the spatial index maintains two lists storing 

the POIs and road segments (only ID stored) that fall into the spatial range of the node. 

Further, each road segment ID points to two sorted lists. One is a list of taxi IDs sorted by 

their arrival time 𝑡𝑎 at the road segment. Usually, we only need to store the ID of taxis 

traversing a road segment in the most recent hours. Consequently, a sorted list is fine here. 

When the time that needs to be stored is very long, a B-tree based temporal index can be 

employed here to manage the ID of taxis.  The other is a list of drop-off and pick-up points 

of passengers sorted by the pick-up time (𝑡𝑝) and drop-off time (𝑡𝑑). The points of a taxi 

trajectory generated in recent hours can be maintained in a list that stores in memory, while 

those of historical trajectory is stored on a hard disk. Given the ID of a taxi, we can retrieve 

the trajectory of the taxi via a hash table. The structure of a road network is represented by 

an adjacency list shown on the top-right part of Figure 15. We can also use a hash table to 

retrieve the neighbor of a road segment in the road network it belongs to. 

       Using the air quality research [Zheng et al. 2013b] as an example, we describe how the 

hybrid indexing structure is used. The goal is to extract four categories of features (POI, 
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road network, traffic, and human mobility features) for a given geographical region from 

different data sources belonging to the region. Given a geographical region, we first retrieve 

the leaf nodes that fall into the region from the quad-tree-based spatial index. By going 

through the lists of POIs and road networks in these leaf nodes respectively, we can quickly 

extract the POI features and road network features, e.g., the distribution of POIs across 

different categories and the total length of highways falling in the region. If we need to 

count the number of road intersections in a region, the adjacency list will be accessed via 

the hash table. As a road segment could cross a few regions, an optimal solution is to merge 

the road segment IDs retrieved from different leaf nodes before checking the adjacency list. 

The map-matching [Yuan et al. 2010b] that projects a GPS trajectory onto a road network 

needs to access the quad-tree spatial index and the adjacency list simultaneously. After the 

map-matching, we can update the taxi list and drop-off/pick-up list on corresponding road 

segment. Later, the travel speed of each road segment can be calculated based on the 

trajectories of the taxis traversing the road segment. Similar to checking the road segment, 

we can merge the taxi IDs from different leaf nodes before accessing the trajectory lists. 

We can also calculate the number of people entering a region and that leaving a region 

based on the drop-off/pick-up list. The indexing structure introduced here is just an example 

and may not be the most optimal. 

 

 
Figure 15. A hybrid index managing road networks, POIs, and taxi trajectories     

       

 
4.3 Knowledge Fusion across Heterogeneous Data Sources 
In urban computing scenarios, we usually need to harness a variety of data sources, which 

are calling for the technology that can effectively fusion the knowledge learned from 

multiple heterogeneous data sources. There are three major ways to this goal: 1) Fusion 

different data sources at a feature level, i.e., treat different data sources equally and put 

together the features extracted from different data sources into one feature vector. Of course, 

a certain kind of normalization technique should be applied to this feature vector before 

feeding it into a data analytics model. This is the most common way that we can see in data 

sciences dealing with heterogeneous sources. 2) Use different data at different stages. For 

instance, Zheng et al. [2011b] first partitioned a city into disjoint regions by major roads 

and then used human mobility data to glean the problematic configuration of a city’s 

transportation network. This is also a very nature way when people think about data fusion. 

3) Feed different data sets into different parts of a model simultaneously. This is based on 
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the deep understanding of the data sources and algorithms. According to the studies [Zheng 

et al. 2013b; Yuan et al. 2012a], the third category of data fusion methods usually has a 

better performance beyond the first one, and the second category can be used 

simultaneously with the first and third. As the first and second categories are quite intuitive 

and have been extensively discussed in literature, we only focus on introducing the last one 

in this section with three tangible examples.  
       Example 1: The first example is what we have briefly introduced in Section 3.1.2, 

where Yuan and Zheng et al. [2012a] inferred the functional regions in a city using road 

network data, points of interests, and human mobility learned from a large number of taxi 

trips. As depicted in Figure 16, a LDA-variant-based inference model was proposed, 

regarding a region as a document, a function as a topic, categories of POIs (e.g., restaurants 

and shopping malls) as metadata (like authors, affiliations, and key words), and human 

mobility patterns as words. More specifically, as shown in the right part of Figure 16, an 

individual departed from region 𝑟1  at 𝑡𝑙  and arrive at region 𝑟2  at 𝑡𝑎 , generating a 

commuting pattern <𝑟1 → 𝑟2, 𝑡𝑙, 𝑡𝑎>. Likewise, another three persons generated another 

commuting pattern <𝑟3 → 𝑟1, 𝑡𝑙′, 𝑡𝑎′> respectively. The mobility pattern is defined as the 

commuting patterns between regions. That is when people leave a region and where they 

are heading to, and when people arrive at a region and where did there come from. Each 

commuting pattern stands for one word describing a region, while the frequency of a 

commuting pattern denotes the number of occurrence of a word in a document. In this 

example, region 𝑟1  contains two words <𝑟1 → 𝑟2 , 𝑡𝑙 , 𝑡𝑎> and <𝑟3 → 𝑟1 , 𝑡𝑙′ , 𝑡𝑎′>. The 

number of occurrences of the two words are one and three, respectively.  

       By feeding POIs (denoted as 𝑥𝑟) and human mobility patterns (denoted as 𝑚𝑟,𝑛) into 

different parts of this model, a region is represented by a distribution of functions, each of 

which is further denoted by a distribution of mobility patterns. 𝑁 stands for the number of 

words (i.e., mobility patterns in a region); 𝑅 denotes the number of documents (regions); 𝐾 

is the number of topics, which should be predefined. Before running the model, a city was 

partitioned into disjointed regions using major roads like high ways and ring roads. So, this 

example uses the third category of data fusion techniques, combined with the second one.  

 

      
Figure 16. Inferring functional regions in a city based on human mobility and POIs 

        

Example 2: The second example was introduced in Section 3.3.2, which is about the 

inference of urban air quality using big data. As illustrated in Figure 17 A), air quality has 

the temporal dependency in an individual location (e.g., the AQI of a location tends to be 

good if the AQI of the past hour is also good) and the spatial correlation among different 

locations (e.g., the air quality of a place could be bad if the air qualities of its surrounding 

locations are bad).  A semi-supervised learning approach was proposed to predict the air 

quality of a location without a monitoring station, based on a co-training framework that 

consists of two separated classifiers. One is a spatial classifier based on an artificial neural 

network (ANN), which takes spatially-related features (e.g., the density of POIs and length 

of highways) as input to model the spatial correlation between air qualities of different 

locations. The other is a temporal classifier based on a linear-chain conditional random 

field (CRF), involving temporally-related features (e.g., traffic and meteorology) to model 
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the temporal dependency of air quality in a location. The two classifiers are mutually 

reinforced in the co-training framework. The results show its advantages beyond four 

categories of baselines, including linear/Gaussian interpolations, classical dispersion 

models, well-known classification models like decision tree and CRF, and ANNs.  

 

 
Figure 17. Infer the fine-grained air quality throughout a city using big data 

 

The reason why they fusion the data this way lies in three aspects: 1) The co-training-

based framework deals with data sparsity by leveraging unlabeled data. Though there are 

a huge volume of observation data like traffic flow, the labeled data generated by existing 

monitoring stations is very limited, i.e., a label sparsity problem. 2) There happen to have 

two sets of features providing two different views for an instance (i.e., the air quality of a 

location). If simply putting together the spatially related features (such as the structure of 

road networks) with the temporally related features (like meteorology and traffic flow) 

whose values change over time constantly, the spatially related features will be ignored by 

some machine learning models. That is, no matter what kind air quality is in a location, 

these spatially related features do not change over time at all. 3) The two classifiers model 

the spatial correlation and temporal dependency respectively, which is interpretable.  

 

Example 3: This example was mentioned in Section 3.4 as an application about energy 

consumption. Specifically, a taxi’s refueling event was detected from its GPS trajectories, 

using first a spatio-temporal clustering algorithm to identify the locations where the taxi 

stayed for a while and then a classification algorithm to filter some instances which may 

not be real refueling events, such as waiting for a traffic light close to a gas station. If the 

queuing time of a gas station can be detected from the data, the number of vehicles in the 

queue can be calculated according to the classic queue theory. Consequently, the gas 

consumption can be roughly estimated, supposing the volume of gas that each vehicle is 

refueled follows a certain distribution. However, at some moment, many gas stations may 

not have a taxi waiting in a queue (but there would be other vehicles), leading to a data 

missing problem. In addition, the distribution of taxi in gas stations may be skewed from 

that of normal vehicles. Observing more taxis (or few taxis) in a station does not suggest 

more normal vehicles (or few normal vehicles). 

To address this issue, as shown in Figure 18, a tensor F was formulated with the three 

dimensions denoting gas stations, day of the week, and time of day respectively. Given that 

the tensor was very sparse, a tensor decomposition technology was applied to approximate 
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the tensor with the multiplication of three low-rank matrices and a core tensor. In order to 

achieve a better approximation, a feature matrix B was also built based on three other data 

sources, consisting of the POIs and traffic flow around a station as well as the geospatial 

size of the station, where each row stands for a gas station and each column denotes a 

feature. The general idea is that gas stations with similar features (such as surrounding 

traffic patterns, POI distributions, and the structure of road networks) could have similar 

refueling patterns. As the feature matrix is quite dense (not sparse), we can enhance the 

accuracy of estimating the missing values in the tensor by incorporating the matrix into the 

process of tensor decomposition. Note that the number of taxis was not used to infer the 

number of normal vehicles. Instead, the waiting time of taxis, which is transferrable, was 

employed to estimate the length of queue.  

This is a clear example of computing with heterogeneous data sources, consisting of 

POIs, road networks, layout of gas stations, and GPS trajectories of taxicabs, where the first 

three data sources were fed into a feature matrix and the last one was used to formulate a 

tensor. The matrix and tensor were blended in the tensor decomposition-based collaborative 

filtering model (refer to Section 4.4.3 for more details in the decomposition technique).  

 
Figure 18. Sensing urban refueling behavior with GPS-equipped taxis 

 
4.4 Techniques Dealing with Data Sparsity 
There are many reasons that lead to a data-missing problem. For example, a user would 

only check-in at a few venues in a location-based social networking service, and some 

venues may not have people visiting them at all. If we put user-location into a matrix where 

each entry denotes the number of visits of users to a place, the matrix is very sparse, i.e., 

many entries do not have a value. If we further consider the activities (such as shopping, 

dining, and sports) that a user can perform in a location as the third dimension, a tensor can 

be formulated. Of course, the tensor is even sparser. Similarly, in the application mentioned 

in Section 4.3 Example 3, many gas stations do not really have a taxi waiting in a queue at 

some moments. Consequently, the tensor shown in Figure 18 is also sparse. The application 

presented in Section 4.3 Example 2 also has a data sparsity problem as there are only a few 

air quality monitoring stations generating training data but having thousands of places in a 

city to infer.  

Data sparsity is a general challenge that has been studied for years in many computing 

tasks. Instead of proposing new algorithms, we hereafter discuss three categories of 

techniques (but not limited to the three) that can be applied to tackle the data sparsity 

problems in urban computing:   

 

4.4.1 Collaborative Filtering.              Collaborative filtering (CF) is a well-known 

model widely used in recommender systems. The general idea behind collaborative filtering 

is that similar users make ratings in a similar manner for similar items [Goldberg et al. 1992; 

Nakamura et al. 1998]. Thus, if similarity is determined between users and items, a potential 

prediction can be made as to the rating of a user with regards to future items. Depending 

on the applications of urban computing, items can be POIs like restaurants and gas stations, 
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or road segments, or geographical regions, etc., and users can be drivers, or passengers, or 

subscribers of a service. Once formulating a matrix, we can use a CF model to fill the 

missing values. 

 
Figure 19. An example of matrix and tensor 

Memory-based CF is the most widely-used algorithms, which are essentially heuristics 

that make rating predictions based on the entire collection of previously rated items by 

users. That is, the value of the unknown rating for a user and an item is usually computed 

as an aggregate of the ratings of some other (usually, the N most similar) users for the same 

item. There are two classes of memory-based CF models: user-based and item-based 

techniques. Using the user-location matrix shown in Figure 19 as an example, user 𝑝’s 

interest (𝑟𝑝𝑖) in a location 𝑖 can be predicted according to the following three Equations, 

which is a common implementation of user-based collaborative filtering: 

 

𝑟𝑝𝑖 =  𝑅𝑝̅̅ ̅̅ + 𝑑 ∑ 𝑠𝑖𝑚(𝑢𝑝, 𝑢𝑞)𝑢𝑞∈𝑈
′ × (𝑟𝑞𝑖 −  𝑅𝑞̅̅ ̅̅ );       (1) 

𝑑 =
1

|𝑈′|
∑ 𝑠𝑖𝑚(𝑢𝑝, 𝑢𝑞)𝑢𝑞∈𝑈

′ ;                                    (2) 

 𝑅𝑝̅̅ ̅̅ =
1

|𝑆(𝑅𝑝)|
∑ 𝑟𝑝𝑖𝑖∈𝑆(𝑅𝑝)

,  ;                                           (3) 

 

Where 𝑠𝑖𝑚(𝑢𝑝, 𝑢𝑞) denotes the similarity between user 𝑢𝑝 and 𝑢𝑞;  𝑅𝑞̅̅ ̅̅  and  𝑅𝑝̅̅ ̅̅  mean the 

average rating of 𝑢𝑝  and 𝑢𝑞  respectively; 𝑆(𝑅𝑝)  represents the collection of locations 

visited by 𝑢𝑝; 𝑈′ is the collection of users who are the most similar to 𝑢𝑞. There are other 

implementation methods of CF models. Refer to [Nakamura et al. 1998] for details. 

 

4.4.2  Matrix Factorization.     Matrix factorization decomposes a matrix into a 

production of two or three matrices. There are multiple kinds of matrix factorizations, e.g., 

LU decomposition, QR decomposition and SVD (Singular Value Decomposition). SVD is 

one of the most frequently used matrix decomposition methods in collaborative filtering, 

factorizing a matrix 𝑋 into three matrices, consisting of left singular vectors (𝑈), singular 

values (∑), and right singular vectors, as shown in Figure 20.  When the matrix X is very 

sparse, we usually can approximate it with three low-rank matrices. For instance, we can 

choose the top n biggest singular values (∑) whose summation is larger than 90% of total 

summation of all the singular values. In this way, matrix factorization can be used as an 

efficient method to implement collaborative filtering. 
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                                           Figure 20. SVD-based matrix factorization 

    Sometimes, we can also consider contexts during the process of matrix factorization. 

For example, as shown in Figure 21, given many users’ location histories, Zheng et al. 

[2010f] built a location-activity matrix (X) where rows stand for locations (such as 

restaurants and shopping malls) and columns represent activities. An entry in the matrix 

denotes the frequency of an activity that has been performed by people in a particular 

location. If this location-activity matrix is completely filled, we can recommend a set of 

locations for a particular activity by retrieving the top k locations with a relatively high 

frequency from the column that corresponds to that activity. Likewise, when performing 

activity recommendation for a location, the top k activities can be retrieved from the row 

corresponding to the location. However, the location-activity matrix is incomplete and very 

sparse, as an individual can usually visit a very few locations. Accordingly, a traditional 

CF model does not work very well in generating quality recommendations. Solely 

factorizing X does not help much either as the data is over sparse.  

 
Figure 21. Coupled matrix-factorization for location-activity recommendation 

  

   To address this issue, the information from another two matrices, respectively shown 

in the left and right part of Figure 21, can be incorporated into the matrix factorization. One 

is a location-feature matrix; the other is an activity-activity matrix. Such kind of additional 

matrices are usually called contexts, which can be learned from other data sources. In this 

example, Matrix Y, where a row stands for a location and a column denotes a category of 

POIs (such as restaurants and hotels) that fall in the location, can be built from a POI 

database. Matrix Z models the correlation between two different activities, which can be 

learned from the search results by sending the titles of two activities into a search engine. 

The main idea is to propagate the information among 𝑋, 𝑌 and 𝑍 by requiring them to share 

low-rank matrices 𝑈 and 𝑉 in a collective matrix factorization model. More specifically, 

an objective function was formulated as: 

𝐿(𝑈, 𝑉,𝑊) =
1

2
∥ 𝐼 ∘ (𝑋 − 𝑈𝑉𝑇) ∥𝐹

2+
𝜆1

2
∥ 𝑌 − 𝑈𝑊𝑇 ∥𝐹

2+
𝜆2

2
∥ 𝑍 − 𝑉𝑉𝑇 ∥𝐹

2+
𝜆3

2
(∥ 𝑈 ∥𝐹

2+∥ 𝑉 ∥𝐹
2+∥ 𝑊 ∥𝐹

2), 

where ∥∙∥𝐹denotes the Frobenius norm. I is an indicator matrix with its entry 𝐼𝑖𝑗 = 0 if 𝑋𝑖𝑗 

is missing, 𝐼𝑖𝑗 = 1 otherwise. The operator “∘” denotes the entry-wise product. The first 

three terms in the objective function control the loss in matrix factorization, and the last 

term controls the regularization over the factorized matrices so as to prevent over-fitting. 

In general, this objective function is not jointly convex to all the variables 𝑈, 𝑉 and 𝑊. 

Consequently, some numerical method, such as gradient descent, was used to get local 

optimal solutions. 

            4.4.3  Tensor Decomposition.               A tensor, which usually has three dimensions, 

can be decomposed into the multiplication of matrices or vectors based on the entries with 

values. The objective function guiding the decomposition is to minimize the error between 

the multiplication of the decomposed results and the values of the existing entries in the 

tensor. After the decomposition, we can fill the missing values in a tensor through 

multiplying the decomposed matrices or vectors. Frequently used tensor decomposition 
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methods include PARAFAC [Rro 1997] and Tucker decomposition [Kolda and Bader 

2009]. As illustrated in Figure 22 A), PARAFAC decomposes a tensor into the summation 

of a series of multiplication of three vectors, while Tucker decomposition approximates a 

tensor with the multiplication of three matrices and a core tensor, as depicted in Figure 22 

B). Sometimes, given a certain approximation error, we can only maintain the first few 

rows or columns (all called singular vectors) of a decomposed matrix to achieve a better 

efficiency (especially when the tensor is very sparse) formally denoted as: 

𝐹𝑖𝑗𝑘 = 𝑆 ×𝐻 𝐻 ×𝐺 𝐺 ×𝐷 𝐷 ≈ 𝑆 ×𝐻 𝐻𝑖∗ ×𝐺 𝐺𝑗∗ ×𝐷 𝐷𝑘∗, 

where 𝐻𝑖∗, 𝐺𝑗∗, and 𝐷𝑘∗ denote low-rank representation of matrices 𝐻, 𝐺, and 𝐷 (see Figure 

22 b)); ×𝐻 means tensor matrix multiplication according to dimension H (also called mode 

of a tensor). Refer to a tutorial on tensor decomposition [Faloutsos et al. 2007] for details.  

                   
A) PARAFAC                                             B) Tucker decomposition 

Figure 22. Tensor decomposition  

 
      To enhance the accuracy of decomposing a sparse tensor, context information can be 

added into the decomposition process. This is similar to matrix factorization with contexts. 

Following the location-activity recommendation example shown in Figure 21 (Section 

4.4.2), Zheng et al. [2010a; 2012d] further took a user dimension into account in a 

recommendation system, therefore generating a (user-location-activity) tensor. Intrinsically, 

the tensor is very sparse as a user usually visits a few places. Later, as demonstrated in 

Figure 23, four matrices were formulated based on other data sources, used as the context 

information to improve the accuracy of the tensor decomposition. A PARAFAC-style 

tensor decomposition framework was then proposed to incorporate the tensor with these 

context matrices for a regularized decomposition. More specifically, an objective function 

was defined as follows:  

ℒ(𝑋, 𝑌, 𝑍, 𝑈) =
1

2
‖𝒜 − ⟦𝑋, 𝑌, 𝑍⟧‖𝐹

2 +
𝜆1

2
tr(𝑋𝑇𝐿𝐵𝑋) +

𝜆2

2
‖𝐶 − 𝑌𝑈𝑇‖𝐹

2 +
𝜆3

2
tr(𝑍𝑇𝐿𝐷𝑍) +

𝜆4

2
‖𝐸 − 𝑋𝑌𝑇‖𝐹

2 +
𝜆5

2
(‖𝑋‖𝐹

2 + ‖𝑌‖𝐹
2 + ‖𝑍‖𝐹

2 + ‖𝑈‖𝐹
2), 

where ⟦𝑋, 𝑌, 𝑍⟧ = ∑𝒙𝑖 ∘ 𝒚𝑖 ∘ 𝒛𝑖 ; the operator ∘  denotes the outer product; 𝐿𝐵  is the 

Laplacian matrix of 𝐵 , defined as 𝐿𝐵 = 𝑄 − 𝐵  with 𝑄  being a diagonal matrix whose 

diagonal entries 𝑄𝑖𝑗 = ∑ 𝐵𝑖𝑗𝑗 ; tr(∙) denotes the trace of a matrix;  ∥∙∥𝐹 denotes the Forbenius 

norm; 𝜆𝑖(𝑖 = 1,⋯ ,5)  are tunable model parameters. Given the objective function, a 

gradient descent was employed to find a local minimal result for 𝑋, 𝑌, and 𝑍.  
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Figure 23. Tensor-decomposition-based location-activity recommendation 

 

       The similar tensor decomposition technology was also employed by Zheng et al 

[2014b] to infer urban noises. As shown in the left part of Figure 24, the noises in each 

geographical region is modeled by a tensor, 𝒜 ∈ ℝ𝑁×𝑀×𝐿  with three dimensions denoting 

𝑁  regions, 𝑀  noise categories, and 𝐿  time slots, respectively. A common approach to 

supplement the missing entries of tensor 𝒜 is to decompose 𝒜 into the multiplication of a 

core tensor  𝑆 ∈ ℝ𝑑𝑅×𝑑𝐶×𝑑𝑇  and three matrices, 𝑅 ∈ ℝ𝑁×𝑑𝑅 , 𝐶 ∈ ℝ𝑀×𝑑𝐶 , 𝑇 ∈ ℝ𝐿×𝑑𝑇  , 

using a tucker decomposition model [7]. The objective function to control the error of the 

decomposition is usually defined as: 

ℒ(𝑆, 𝑅, 𝐶, 𝑇) =
1

2
‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖𝐹

2 +
𝜆

2
(‖𝑅‖𝐹

2 + ‖𝐶‖𝐹
2 + ‖𝑇‖𝐹

2). 

      In this problem, however, the tensor is over sparse. For example, if setting 1 hour as a 

time slot, only 5.18% entries of 𝒜 have values in weekends. Decomposing 𝒜 solely based 

on its own non-zero entries is not accurate enough. To deal with the data sparsity problem, 

as illustrated in the right part of Figure 24, Zheng et al. extracted three categories of features, 

consisting of geographical features, human mobility features, and the noise category 

correlation features (denoted by matrices 𝑋, 𝑌, and 𝑍), from POI/road network data, user 

check-ins, and 311 data, respectively. These features were used as contexts in the 

decomposition process to reduce inference errors, using the objective function:  

ℒ(𝑆, 𝑅, 𝐶, 𝑇, 𝑈) =
1

2
‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖𝐹

2 +
𝜆1
2
‖𝑋 − 𝑅𝑈‖𝐹

2 + 
𝜆2
2
tr(𝐶𝑇𝐿𝑍𝐶)

+
𝜆3
2
‖𝑌 − 𝑇𝑅𝑇‖𝐹

2 +
𝜆4
2
(‖𝑅‖𝐹

2 + ‖𝐶‖𝐹
2 + ‖𝑇‖𝐹

2 + ‖𝑈‖𝐹
2) 

Where ‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖𝐹
2  is to control the error of decomposing 𝒜; ‖𝑋 − 𝑅𝑈‖𝐹

2  

is to control the error of factorization of 𝑋 ; ‖𝑌 − 𝑇𝑅𝑇‖𝐹
2  is to control the error of 

factorization of 𝑌 ; ‖𝑅‖𝐹
2 + ‖𝐶‖𝐹

2 + ‖𝑇‖𝐹
2 + ‖𝑈‖𝐹

2  is a regularization penalty to avoid 

over-fitting;  𝜆1, 𝜆2, 𝜆3, and 𝜆4 are parameters controlling the contribution of each part 

during the collaborative decomposition. When 𝜆1=𝜆2= 𝜆3= 𝜆4=0, our model degenerates 

to the original tucker decomposition. 𝐶 ∈ ℝ𝑀×𝑑𝐶 ,  𝑡𝑟(∙) denotes the matrix trace; 𝐷𝑖𝑖 =
∑ 𝑍𝑖𝑗𝑖  is a diagonal matrix, and 𝐿𝑍 = 𝐷 − 𝑍  is the Laplacian matrix of the category 

correlation graph.  

     More specifically, 𝒜  and 𝑋  shares matrix 𝑅 ; 𝒜  and 𝑌  share matrix 𝑅  and 𝑇 ; 𝐿𝑍 

influences factor matrix 𝐶 . The dense representation of 𝑋 , 𝑌  and 𝑍  contributes to the 

generation of a relatively accurate 𝑅, 𝐶, and 𝑇, which reduce the decomposition error of 

𝒜  in turn. In other words, the knowledge from geographical features, human mobility 

features, and the correlation between noise categories are propagated into tensor 𝒜.  

               
Figure 24. Using context-aware tensor decomposition to infer urban noise 
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           4.4.4 Semi-supervised Learning and Transfer Learning.            Semi-supervised 

learning is a class of supervised learning tasks and techniques that also make use of 

unlabeled data for training - typically a small amount of labeled data with a large amount 

of unlabeled data. Many machine-learning researchers have found that unlabeled data, 

when used in conjunction with a small amount of labeled data, can produce considerable 

improvement in learning accuracy. There are multiple semi-supervised learning methods, 

such as, generative models, graph-based methods, and co-training. A survey on this topic 

can be found in [Zhu 2008].  Specifically, co-training is a semi-supervised learning 

technique that requires two views of the data. It assumes that each example is described by 

two different feature sets that provide different and complementary information about an 

instance. Ideally, the two feature sets of each instance are conditionally independent given 

the class, and the class of an instance can be accurately predicted from each view alone. 

Co-training can generate a better inference result as one of the classifiers correctly labels 

data that the other classifier previously misclassified [Nigam and Ghani 2000]. The 

Example 2 introduced in Section 4.3.2 is based on the co-training technique.  

        Transfer learning: A major assumption in many machine learning and data mining 

algorithms is that the training and future data must be in the same feature space and have 

the same distribution. However, in many real-world applications, this assumption may not 

hold. For example, we sometimes have a classification task in one domain of interest, but 

we only have sufficient training data in another domain of interest, where the latter data 

may be in a different feature space or follow a different data distribution. Different from 

semi-supervised learning, which assumes that the distributions of the labeled and unlabeled 

data are the same, transfer learning, in contrast, allows the domains, tasks, and distributions 

used in training and testing to be different. In the real world, we observe many examples 

of transfer learning. For instance, learning to recognize tables may help recognize chairs. 

Pan and Yang et al. [2010] gave a good survey on transfer learning, classifying transfer 

learning into three sub-categories based on different situations between the source and 

target domains and tasks, as shown in Table 1. 

Table 1. Different kinds of transfer learning 

Learning settings Source and target domains Source and target tasks 

Traditional machine learning the same the same 

Transfer 
Learning 

Inductive learning / 
unsupervised transfer learning 

the same different but related 

different but related different but related 

Transductive learning different but related the same 

 

Transfer learning algorithms can help deal with data sparsity problems in urban computing. 

For instance, an alternative way to conquer labeling sparsity problem in the air quality 

inference [Zheng 2013b] is to transfer the knowledge learned from some cities with 

sufficient air quality data to the cities having insufficient data. This belongs to transductive 

learning as shown in Table 1.   

 
4.5 Visualizing Big Urban Data 
 
When talking about data visualization, many people would only think about 1) the 

visualization of raw data and 2) the presentation of results generated by data mining 

processes [Martinoc 2007]. The former may reveal the correlation between different factors, 

therefore suggesting features for a machine learning model. For instance, Figure 25 A) 

shows the correlation matrix between the AQI of PM10 and meteorological data, consisting 
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of temperature, humidity, barometer pressure, and wind speed, using the data collected in 

Beijing from August to Dec. 2012, where each row/column denotes one kind of 

meteorological data and a plot means the AQI label of a location. Apparently, a high wind 

speed disperses the concentration of PM10, and high humidity usually causes a high 

concentration. Consequently, they can be important features in a machine learning model 

to infer the air quality of a location.  

 

            
A) Correlation between meteorology and air quality    B) Refueling behavior inferred from taxi data 

  Figure 25. Examples of visualization on urban data 

 

      On the other hand, Figure 25 B) visualizes the result, i.e., the number of visits to gas 

stations by all the drivers in a city, inferred by the data mining model we introduced in 

Example 3 of Section 4.3. The presentation of results can help energy infrastructure 

authorities better make a decision on where additional gas stations should be built. As 

mentioned before, spatio-temporal data is widely used in urban computing. For a 

comprehensive analysis, the data needs to be considered from two complementary 

perspectives: 1) as spatial distributions changing over time (i.e., spaces in time) and 2) as 

profiles of local temporal variation distributed over space (i.e., time in spaces) [Andrienko 

2010].    

      However, data visualization is not solely about displaying raw data and presenting 

results. Exploratory visualization becomes even more important in urban computing, 

detecting and describing patterns, trends, and relations in data, motivated by certain 

purposes of investigation. As something relevant is detected in data, new questions arise, 

causing specific parts to be viewed in more detail. So, exploratory visualization combines 

the strengths of human and electronic data processing in an interactive way, involving 

hypothesis generation rather than mere hypothesis testing [Andrienko 2003]. 

 

4.6 Other Techniques 
Besides the aforementioned techniques, urban computing, as a multidisciplinary field, also 

needs the support of other technologies, such as optimization technology and information 

security. Though trying to involve the knowledge of other fields as much as possible, this 

article is majorly written from computer sciences’ perspective.  

 

                     4.6.1 Optimization Techniques.                       First, many data mining tasks 

can be solved by optimization methods, such as matrix factorization and tensor 

decomposition. Examples include the location-activity recommendations [Zheng et al. 
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2010a; 2010f; 2012d] and the refueling behavior inference research [Zhang et al. 2013] we 

introduced in Section 4.3.  Second, the learning process of many machine learning models 

is actually based on optimization and approximation algorithms, e.g., Maximum Likelihood, 

gradient descent, and EM (Estimation and Maximization). Third, the research results from 

operation research can be applied to solving an urban computing task, if combined with 

other techniques, such as database algorithms. For instance, the ridesharing problem has 

been studied for many years in operation research. It has been proved to be a NP-hard 

problem if we want to minimize the total travel distance of a group of people who expect 

to share rides. As a consequence, it is really hard to apply existing solutions to a large group 

of users, especially in an online application. In the dynamic taxi ridesharing system T-Share, 

Ma et al. [2013] combined spatio-temporal database techniques with optimization 

algorithms to significantly scale down the number of taxis that need to check. Finally, the 

service can be provided online to answer the instant queries of millions of users. Another 

example was introduced in Section 3.7.1. Chawla et al. [2012] combined a PCA-based 

anomaly detection algorithm with 𝐿1 minimization techniques to diagnose the traffic flows 

that lead to a traffic anomaly. The spatio-temporal property and dynamics of urban 

computing applications also bring new challenges to current operation research.  

                     

                 4.6.2 Information Security.             Information security is also nontrivial for an 

urban computing system that may collect data from different sources and communicate 

with millions of devices and users. The common problems that would occur in urban 

computing systems include: data security (e.g., guaranteeing the received data is integrate, 

fresh, and undeniable), authentication between different sources and clients, and the 

intrusion detection in a hybrid system (connecting digital and physical worlds). 

 
 4.7 Future Directions 
Although many research projects about urban computing have been done in recent years, 

there are still quite a few technologies that are missing or not well studied.  

 Balanced crowdsensing: The data generated through a crowdsensing method is non-

uniformly distributed in geographical and temporal spaces. In some locations, we may 

have the data much more than what we really need. A down-sampling method, e.g., 

compressive sensing, could be useful to reduce a system’s communication loads. On 

the contrary, in the places where we may not have enough data or even do not have 

data at all, some incentives that can motivate users to contribute data should be 

considered. Given a limited budget, how to configure the incentive for different 

locations and time periods so as to maximize the quality of the received data (e.g., the 

coverage or accuracy) for a specific application is yet to explore.   

 Skewed data distribution: In many cases, what we can obtain is a sample of the urban 

data, whose distribution may be skewed from the complete dataset. Having the entire 

dataset may be always infeasible in an urban computing system. Some information is 

transferrable from the partial data to the entire dataset. For instance, the travel speed 

of taxis on roads can be transferred to other vehicles that are also traveling on the same 

road segment. Likewise, the waiting time of a taxi at a gas station can be used to infer 

the queuing time of other vehicles. Other information, however, cannot be directly 

transferred. For example, the traffic volume of taxis on a road may be different from 

private vehicles. As a consequence, observing more taxis on a road segment does not 

always suggest more other vehicles.  
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 Managing and indexing multimode data sources:  Different kinds of index structures 

have been proposed to manage different types of data individually, whereas the hybrid 

index that can simultaneously manage multiple types of data (e.g., spatial, temporal 

and social media) is yet to study. The hybrid index, such as the example shown in 

Figure 15, is a foundation enabling an efficient and effective learning of multiple 

heterogeneous data sources. 

 Knowledge fusion: Data mining and machine learning models dealing with a single 

data source have been well explored. However, the methodology that can learn 

mutually reinforced knowledge from multiple data sources is still missing. The fusion 

of knowledge does not mean simply putting together a collection of features extracted 

from different sources but also a deep understanding of each data source and an 

effective usage of different data sources in different parts of a computing framework. 

The research, like the three examples [Zheng et al. 2013b and Zhang et al. 2013] 

presented in Section 4.3, is considered rare. 

 Exploratory and interactive visualization for multiple data sources: An urban 

computing system usually has a lot of data and knowledge to visualize. So far, it is not 

an easy task to investigate the implicit relationship among multiple data sources 

through an exploratory visualization in spatial and spatio-temporal spaces. For instance, 

there are multiple factors (e.g., traffic, factory emission, meteorology, and land use, 

etc.) that could influence the air quality of a location. Unfortunately, it is still not easy 

to answer the following questions: which factor is more prominent in impacting the air 

quality of a given location or in a given time period? Or, what is the major root cause 

of PM2.5 in the winter of Beijing?  

 Algorithm integration: To provide an end-to-end urban computing scenario, we need 

to integrate algorithms of different domains into a computing framework. For instance, 

we need to combine data management techniques with machine learning algorithms to 

provide a both efficient and effective knowledge discovery ability. Similarly, through 

integrating spatio-temporal data management algorithms with optimization methods, 

we can solve the large-scale dynamic ridesharing problem. Visualization techniques 

should be involved in a knowledge discovery process, working with machine learning 

and data mining algorithms. So, urban computing is calling for both the fusion of data 

and the integration of algorithms. In a long run, the unprecedented data that we are 

facing will blur the boundary between different domains in conventional computer 

sciences (e.g., databases and machine learning) or even bridge the gap between 

different disciplines’ theories, such as civil engineering and ecology.  

 Intervention-based analysis and prediction: In urban computing, it is vital to predict 

the impact of a change in a city’s setting. For instance, how a region’s traffic will 

change if a new road is built in the region? To what extent the air pollution will be 

reduced if we remove a factory from a city? How people’s travel patterns will be 

affected if a new subway line is launched? Being able to answer this kind of questions 

with automated and unobtrusive technologies will be tremendously helpful to inform 

governmental officials and city planner’s decision making. Unfortunately, the 

intervention-based analysis and prediction technology that can estimate the impact of 

a change in advance by plugging in and out some factors in a computing framework is 

not well studied yet. 

 

 
4.8 Miscellaneous 
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       Conferences and Workshops: The research into urban computing published in 

computer sciences domain can be majorly found in leading conferences, such as KDD, 

ICDE, and UbiComp, and a few workshops, like the ACM International Workshop on 

Urban Computing (UrbComp) [Zheng and Wolfson 2012c; Zheng et al. 2013a].  

       Journal and Magazines: We can also easily find related articles from many journals, 

such as IEEE Transaction on Knowledge Discovery and Data Engineering (IEEE TKDE), 

ACM Transaction on Intelligent Systems and Technology (ACM TIST), and Personal and 

Ubiquitous Computing (Springer PUC), and magazines, like IEEE Pervasive Computing. 

       Data Sources: Quite a few major cities have their own open data portal, e.g., NYC has 

published many useful data sources on their portal: https://nycopendata.socrata.com/. There 

are also a few public datasets on some researchers’ homepage, e.g. Dr. Zheng’s homepage.  

 

   

5. CONCLUSION 
The massive data that have been generated in urban spaces and the advances in computing 

technology have provided us with unprecedented opportunities to tackle the big challenges 

that cities face. Urban computing is an interdisciplinary field where computer sciences meet 

conventional city-related disciplines, such as civil engineering, ecology, sociology, 

economy, and energy, in the context of cities. The vision of urban computing – acquisition, 

integration, and analysis of big data to improve urban systems and life quality – will lead 

to smarter and greener cities that are of great importance to billions of people. The big data 

will also blur the boundary between different domains that were formulated in conventional 

computer sciences (e.g., databases, machine learning, and visualization) or even bridge the 

gap between different disciplines, e.g., computer sciences and civil engineering. While 

urban computing holds great promise to revolutionize urban sciences and progresses, quite 

a few techniques, such as the hybrid indexing structure for multimode data, the knowledge 

fusion across heterogeneous data sources, exploratory visualization for urban data, the 

integration of algorithms of different domains, and intervention-based analysis, are yet to 

explore. This article discussed the concept, framework and challenges of urban computing, 

introduced the representative applications and techniques for urban computing, and 

suggested a few research directions that call for the effort from the communities. 

 

REFERENCES 
 

AGGARWAL, C. 2007. Data Streams: Models and Algorithms. New York: Springer. ISBN 978-0-387-

47534-9.  

ANDRIENKO, G., ANDRIENKO, N., BREMM, S., SCHRECK, T., LANDESBERGER, T. V., BAK, P., KEIM, D. 

2010. Space‐in‐Time and Time‐in‐Space Self‐Organizing Maps for Exploring Spatiotemporal 

Patterns. Eurographics/ IEEE-VGTC Symposium on Visualization 2010.  

ANDRIENKO, N., ANDRIENKO, G., AND GATALSKY, P. 2003. Exploratory spatio-temporal visualization: an 

analytical review. Journal of Visual Languages & Computing, 14(6), Elsevier: Pages 503-541 

ANGLES, R., GUTIERREZ, C. 2008. Survey of graph database models. ACM Computing Surveys. 40(1), 

ACM Press, 1-39 

BAO, J., ZHENG, Y., WILKIE, D., MOKBEL. 2012. Location-based and Preference-Aware Recommendation 

Using Sparse Geo-Social Networking Data. In Proceeding of the 20th ACM SIGSPATIAL Conference 

on Advances in Geographic Information Systems, ACM press, 199-208. 

BAO, J., ZHENG, Y., WILKIE, D., MOKBEL, M. F. 2014. A Survey on Recommendations in Location-based 

Social Networks. Submitted to GeoInformatica.  

https://nycopendata.socrata.com/
http://research.microsoft.com/en-us/people/yuzheng/
http://www.sciencedirect.com/science/journal/1045926X


Urban Computing: Concepts, Methodologies, and Applications     ●      9: 51 
 

 
ACM Trans. Intelligent Systems and Technology, Vol. 6, No. 3, Article 9, Pub. date: November 2013. 

BASTANI, F., HUANG, Y., XIE, X. AND POWELL, J. W. 2011. A greener transportation mode: flexible routes 

discovery from GPS trajectory data. In Proceedings of the 19th ACM SIGSPATIAL International 

Conference on Advances in Geographic Information Systems. ACM Press, 405-408  

BEJAN, A., I., GIBBENS, R., J., EVANS D., BERESFORD, A., R., BACON, J., FRIDAY A. 2010. Statistical 

Modelling and Analysis of Sparse Bus Probe Data in Urban Areas, In Proceeding of the 13th IEEE 

International conference on Intelligent Transportation Systems. IEEE press, 1256-1263. 

BERLINGERIO, M., CALABRESE, GIUSY, F., LORENZO, D., NAIR, R., PINELLI, F., SBODIO, M. L. 2013. 

AllAboard: a system for exploring urban mobility and optimizing public transport using cellphone 

data. In Proceeding of the 12th European Conference on Machine Learning and Principles and 

Practice of Knowledge Discovery in Databases, Spring Press, 663-666. 

BORGNAT, P., FLEURY, E., ROBARDET, C., SCHERRER, A. 2009. Spatial analysis of dynamic movements 

of VloV, Lyon’s shared bicycle program. In Proceeding of the European Conference on Complex 

Systems. Warwick University, Coventry, UK. 

CANDIA, J., GONZÁLEZ, M. C., WANG, P., SCHOENHARL, T., MADEY, G., BARABÁSI, A. L. 2012.  

Uncovering individual and collective human dynamics from mobile phone records.  

Journal of Physics A: Mathematical and Theoretical, 41 (22), 224015 

CASTRO-NETO, M., JEONG, Y. S., JEONG, M., K., HAN, L., D. 2009. Online-SVR for short-term traffic 

prediction under typical and atypical traffic conditions. Expert systems with applications. 36(3), 

Elsevier press, 6164-6173.  

CASTRO, P., S., ZHANG, D., CHEN, C., LI, S., PAN, G. 2013. From taxi GPS traces to social and community 

dynamics: A survey. ACM Computer Survey, 46, 2, Article 17, 34 pages. 

CEAPA, I., SMITH, C., AND CAPRA, L. 2012. Avoiding the Crowds: Understanding Tube Station Congestion 

Patterns from Trip Data. In Proceeding of the 1st ACM SIGKDD International Workshop on Urban 

Computing. ACM press, 134-141. 

CHANDOLA, V., BANERJEE, A., KUMAR, V. 2009. Anomaly detection: a survey. ACM Computing Surveys, 

41(3), pp. 1–58. 

CHAWLA, S., ZHENG, Y., AND HU, J. 2012. Inferring the root cause in road traffic anomalies,  

In Proceeding of the 2012 IEEE International Conference on Data Mining. IEEE press, 141-150. 

CHEN, X., ZHENG, Y., CHEN, Y., JIN, Q., SUN, W., CHANG, E., MA, W. Y. 2014. Indoor air quality 

monitoring system for smart buildings. In Proceedings of the 16th ACM international conference on 

Ubiquitous Computing. ACM Press, 

CHEN, Y., JIANG, K., ZHENG, Y., LI, C., YU, N. 2009. Trajectory Simplification Method for Location-Based 

Social Networking Services. In Proceedings of the 1st ACM GIS workshop on Location-based social 

networking services. ACM press, 33-40. 

CHEN, Z., SHEN, H.T., ZHOU, X., ZHENG, Y., XIE, X. 2010. Searching Trajectories by Locations: An 

Efficiency Study, In ACM SIGMOD International Conference on Management of Data, ACM Press, 

255-266. 

CRANSHAW, J., SCHWARTZ, R., HONG, J. AND SADEH, N. 2012 The livehoods project: Utilizing social 

media to understand the dynamics of a city. Association for the Advancement of Artificial Intelligence. 

CRANSHAW, J. TOCH, E., HONG, J., KITTUR, A., SADEH, N. 2010. Bridging the Gap between Physical 

Location and Online Social Networks. In Proceedings of the 12th ACM international conference on 

Ubiquitous Computing. ACM Press, 119-128. 

DEVARAKONDA, S., SEVUSU, P., LIU, H., LIU, R., IFTODE, L., NATH, B. 2013. Real-time Air Quality 

Monitoring Through Mobile Sensing in Metropolitan Areas. In Proceeding of the 2nd ACM SIGKDD 

International Workshop on Urban Computing. ACM press. 

D’HONDT, E. AND MATTHIAS S. 2011. Participatory noise mapping. In Proceeding of the 9th International 

Conference on Pervasive Computing, Springer press, Pages 33-36. 

DOUGLAS, D. AND PEUCKER, T. 1973. Algorithms for the Reduction of the Number of Points Required to 

Represent a Line or its Caricature. The Canadian Cartographer, 10(2):112–122. 

DUSPARIC, I., HARRIS, C., MARINESCU, A., CAHILL, V., CLARKE, S. 2013. Multi-agent residential demand 

response based on load forecasting. In Proceeding of the IEEE Conference on Technologies for 

Sustainability – Engineering and the Environment.  

GALVAN-LOPEZ, E., TAYLOR, A., CLARKE, S., CAHILL, V. 2014. Design of an Automatic Demand-Side 

Management System Based on Evolutionary Algorithms. In Proceeding of the the 29th Annual ACM 

Symposium on Applied Computing, ACM Press, 24 - 28. 



1: 52 ● Y. Zheng, L. Capra, O. Wolfson, H. Yang 
 

 

ACM Trans. Intelligent systems and technologies, Vol. 6, No. 3, Article 9, Pub. date: November 2014. 
 

GANDIA, R. City outlines travel diary plan to determine future transportation needs. Media, Calgary Sun, 

2012. 

GE, Y., XIONG, H., TUZHILIN, A., XIAO, K., GRUTESER, M. AND PAZZANI, M. 2010. An energy-efficient 

mobile recommender system. In Proceedings of 16th SIGKDD conference on Knowledge Discovery 

and Data Mining, ACM Press: 899–908. 

GIANNOTTI, F., NANNI, M., PEDRESCHI, D., PINELLI, F. 2007. Trajectory Pattern Mining. In Proceeding of 

the 13th ACM SIGKDD conference on Knowledge Discovery and Data Mining. ACM Press, 330-339.  

GOLDBERG, D., DAVID, N., BRAIN, M. O., DOUGLAS, T. 1992. Using collaborative filtering to weave an 

information tapestry. Communications of the ACM, 35 (12): 61–70. 

GOLDMAN, J., SHILTON, K., BURKE, J., ESTRIN, D., HANSEN, M., RAMANATHAN, N., REDDY, S., SAMANTA, 

V., SRIVASTAVA, M., AND WEST, R. 2009. Participatory Sensing：A citizen-powered approach to 

illuminating the patterns that shape our world. White paper. 

GONZÁLEZ, M. C., Hidalgo, C. A., BARABÁSI, A. L. 2008. Understanding individual human mobility 

patterns.  

Nature, 453 (7196), 779-782 

GUDMUNDSSON, J. AND KREVELD, M. V. 2006. Computing longest duration flocks in trajectory data. In 

Proceeding of the 14th International Conference on Advances in Geographical Information Systems. 

ACM press, 35–42.  

GUDMUNDSSON, J., KREVELD, M. V., AND SPECKMANN, B. 2004 .Efficient detection of motion patterns in 

spatio-temporal data sets. In the Proceeding of the 12th International Conference on Advances in 

Geographical Information Systems, ACM Press: 250–257. 

GUEHNEMANN, A., SCHAEFER, R. P., THIESSENHUSEN, K. U., WAGNER, P. 2004. Monitoring traffic and 

emissions by floating car data. Institute of transport studies, Australia. 

FALOUTSOS, C., KOLDA, T. G. AND SUN. J. Mining Large Time-evolving Data Using Matrix and Tensor 

Tools. Tutorial at ICML 2007. 

FROEHLICH, J., NEUMANN, J., OLIVER, N., 2009. Sensing and predicting the pulse of the city through shared 

bicycling. In Proceedings of the 21st International Joint Conference on Artificial intelligence. 

Pasadena, California, USA, pp. 1420–1426. 

FU, Y., XIONG, H., GE. Y., YAO, Z. AND ZHENG, Y. 2014. Exploiting Geographic Dependencies for Real 

Estate Appraisal: A Mutual Perspective of Ranking and Clustering. In Proceedings of 20th SIGKDD 

conference on Knowledge Discovery and Data Mining. ACM Press. 

HAKLAY, M. AND WEBER, P. 2008. Openstreetmap: User-generated street maps. Pervasive Computing, 

7(4), IEEE Press, 12-18.  

HANSON, S. AND HANSON, P. 1980. Gender and Urban Activity Patterns in Uppsala, Sweden. Geographical 

Review, 70(3), 291-299. 

Harris, C., Doolan, R., Dusparic, I., Marinescu, A., Cahill, V., Clarke, S. 2014. A Distributed Agent Based 

Mechanism for Shaping of Aggregate Demand, ENERGYCON 2014 

HERRERA, J. C., WORK, D. BAN, X., HERRING, R. JACOBSON, Q. AND BAYEN, A. 2010. Evaluation of 

traffic data obtained via GPS-enabled mobile phones: the Mobile Century field experiment. 

Transportation Research C, 18, 568–583. 

HERRING R., HOFLEITNER A., ABBEEL P., BAYEN A. 2010. Estimating arterial traffic conditions using 

sparse probe data. In Proceeding of the 13th IEEE International Conference on Intelligent 

Transportation Systems, IEEE press, 923-929. 

HODGE, V. J. AND AUSTIN, J. 2004. A survey of outlier detection methodologies, Artificial Intelligence 

Review, 22 (2), pp. 85–126. 

HONG, L., ZHENG, Y., YUNG, D., SHANG, J., ZOU, L. 2014. Detecting Black Holes and Volcanoes in a 

Spatio-Temporal Graph. Submitted to ICDE 2014. 

HRISTOVA, D., QUATTRONE, G., MASHHADI, A. AND CAPRA, L. 2013. The Life of the Party: Impact of 

Social Mapping in OpenStreetMap. In Proceeding of the 7th AAAI Conference on Weblogs and Social 

Media. AAAI press. 

HUNG, C., C., CHANG, C., W., PENG, W., C. 2009. Mining trajectory profiles for discovering user 

communities.  In Proceedings of the 1st ACM SIGSPATIAL GIS workshop on location based social 

networks. ACM press, 1-8.  



Urban Computing: Concepts, Methodologies, and Applications     ●      9: 53 
 

 
ACM Trans. Intelligent Systems and Technology, Vol. 6, No. 3, Article 9, Pub. date: November 2013. 

HUNTER, T., HERRING, R., ABBEEL, P. AND BAYEN, A. 2009. Path and travel time inference from gps 

probe vehicle data, in Proceeding of the international Workshop on Analyzing Networks and Learning 

with Graphs. 

JEUNG, H., YIU, M., ZHOU, X., JENSEN, C. AND SHEN, H. 2008a. Discovery of convoys in trajectory 

databases. In the Proceedings of the VLDB Endowment, 1(1), ACM press, 1068–1080. 

JEUNG, H., SHEN, H. AND ZHOU, X. 2008b. Convoy queries in spatio-temporal databases. In the Proceeding 

of the 24th International Conference on Data Engineering, IEEE press, 1457–1459.  

JIANG, S., FIORE, G., YANG, Y., FERREIRA, J., FRAZZOLI, E., GONZÁLEZ, M. C. 2013. A Review of Urban 

Computing for Mobile Phone Traces: Current Methods, Challenges and Opportunities. In the 

proceeding of the 2nd SIGKDD workshop on urban computing. 

JIANG, S., FERREIRA, J., GONZALEZ, M. C. 2012. Discovering urban spatial-temporal structure from human 

activity patterns. In Proceedings of the 1st ACM SIGKDD International Workshop on Urban 

Computing. ACM Press: 95-102. 

KALTENBRUNNER, A., MEZA, R., GRIVOLLA, J., CODINA, J., BANCHS, R. 2010. Urban cycles and mobility 

patterns: exploring and predicting trends in a bicycle-based public transport system. IEEE Pervasive 

and Mobile Computing, 6, IEEE Press, 455–466. 

KANOULAS, E., DU, Y., XIA, T. AND ZHANG, D. 2006. Finding fastest paths on a road network with speed 

patterns, in Proceeding of the 22th International Conference on Data Engineering.  

KARAMSHUK, D., NOULAS, A., SCELLATO, S., NICOSIA, V., M., CECILIA. 2013. Geo-Spotting: Mining 

Online Location-based Services for Optimal Retail Store Placement. In the Proceedings of 19th ACM 

International Conference on Knowledge Discovery and Data Mining. ACM press, 793-801. 

KEOGH, E. CHU, J., HART, S. D. AND PAZZANI, M. J. 2001. An On-Line Algorithm for Segmenting Time 

Series. In Proceeding of the International Conference on Data Mining, IEEE press, 289–296. 

KINDBERG, T., CHALMERS, M., PAULOS, E. 2007. Gest editors’ introduction: Urban computing. Pervasive 

computing. 6(3), IEEE press, 18-20. 

KOLDA, T. G. AND BADER, B. W. 2009. Tensor Decompositions and Applications. SIAM Rev., 51(3), 455–

500. 

KOSTAKOS V., O’NEILL, E. 2008. Cityware: Urban computing to bridge online and real-world social 

networks. Handbook of Research on Urban Informatics. 

KRUMM, J. AND HORVITZ, E. 2006. Predestination: Inferring destinations from partial trajectories, In Proceed 

of the 8th International Conference on Ubiquitous Computing, ACM press, 243–260. 

LATHIA, N. AND CAPRA, L. 2011a. Mining Mobility Data to Minimise Travellers' Spending on Public 

Transport. In Proceeding of the 17th ACM SIGKDD Conference on Knowledge Discovery and Data 

Mining. ACM Press, 1181-1189.  

LATHIA, N. AND CAPRA, L. 2011b. How Smart is Your Smartcard? Measuring Travel Behaviours, 

Perceptions, and Incentives. In Proceeding of the 13th ACM International Conference on Ubiquitous 

Computing. ACM Press, 291-300. 

LATHIA, S. A., AND CAPRA, L. 2012. Measuring the Impact of Opening the London Shared Bicycle Scheme 

to Casual Users. Transportation Research Part C. Elsevier press, 22, 88-102. 

LATHIA, N., FROEHLICH, J. AND CAPRA, L. 2010. Mining Public Transport Usage for Personalised 

Intelligent Transport Systems. In the Proceeding of the 10th IEEE International Conference on Data 

Mining. IEEE Press: 887-892. 

LEE, R., AND SUMIYA, K. 2010. Measuring Geographical Regularities of Crowd Behaviors for Twitter-

based Geo-social Event Detection. In Proceedings of ACM SIGSPATIAL GIS workshop on location 

based social networks. ACM press, 1-10. 

LEE, D., WANG, H., CHEU, R. AND TEO, S. 2004. Taxi dispatch system based on current demands and real-

time traffic conditions. Transportation Research Record: Journal of the Transportation Research 

Board, 1882(-1):193–200. 

LI, Z., DING, B., HAN, J. AND KAYS, R. 2010. Swarm: Mining relaxed temporal moving object clusters. In 

the Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 723–734. 

LI, Q., ZHENG, Y., XIE X., CHEN Y., LIU W. AND MA W. 2008. Mining user similarity based on location 

history. IN Proc. of the 16th International Conference on Advances in geographic information system, 

ACM Press: 

LIU, W., ZHENG, Y., CHAWLA, S., YUAN, J. AND XIE, X. 2011. Discovering Spatio-Temporal Causal 

Interactions in Traffic Data Streams. In Proceeding of 17th SIGKDD conference on Knowledge 

Discovery and Data Mining. ACM Press: 



1: 54 ● Y. Zheng, L. Capra, O. Wolfson, H. Yang 
 

 

ACM Trans. Intelligent systems and technologies, Vol. 6, No. 3, Article 9, Pub. date: November 2014. 
 

LIU, B., FU, Y., YAO, Z. XIONG, H. 2013. Learning geographical preferences for point-of-interest 

recommendation. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge 

discovery and data mining. ACM Press. 

LOU, Y., ZHANG, C. ZHENG, Y., XIE, X., WANG, W., HUANG, Y. 2009. Map-Matching for Low-Sampling-

Rate GPS Trajectories. In Proceedings of the 17th ACM SIGSPATIAL Conference on Geographical 

Information Systems. ACM Press, 352-361. 

LUKASZ, G., TAMER, Ö. M. 2010. Data Stream Management. Waterloo, USA: Morgan and Claypool. 

ISBN 978-1-608-45272-9. 

MA, S., ZHENG, Y., WOLFSON, O. 2013. T-Share: A Large-Scale Dynamic Taxi Ridesharing Service. In 

Proceedings of IEEE International Conference on Data Engineering. IEEE Press. 

MARATNIA, N. AND R.A. DE BY. 2004. Spatio-Temporal Compression Techniques for Moving Point 

Objects. In Proceeding of the 9th International Conference on Extending Database Technology, IEEE 

press: 765–782. 

MASHHADI, A., QUATTRONE, G. AND CAPRA, L. 2013. Putting Ubiquitous Crowd-sourcing into Context. 

In Proceeding of the 16th ACM Conference on Computer Supported Cooperative Work and Social 

Computing. ACM Press, 611-622. 

MARINESCU, A., DUSPARIC, I., HARRIS, C., CLARKE, S., CAHILL, V. 2014. A Dynamic Forecasting Method 

for Small Scale Residential Electrical Demand, In Proceeding of the International Joint Conference on 

Neural Networks, IEEE Press. 

MARTINOC, D., BERTOLOTTOA, S. M., FERRUCCIC, F., KECHADI, T., COMPIETA, P. 2007. Exploratory 

spatio-temporal data mining and visualization. Journal of Visual Languages & Computing, 18(3), 

Pages 255-279 

MOMTAZPOUR, M., BUTLER, P., HOSSAIN, M. S., BOZCHALUI, M., RAMAKRISHNAN, N., SHARMA R. 2013. 

Coordinated Clustering Algorithms to Support Charging Infrastructure Design for Electric Vehicles. 

In Proceeding of the 2nd ACM SIGKDD International Workshop on Urban Computing.  

NAKAMURA, A. AND ABE, N. 1998. Collaborative Filtering Using Weighted Majority Prediction 

Algorithms, In Proceeding of the 15th International Conference on Machine Learning, Madison 

Wisconsin, USA. ACM press, 395-403. 

NAIR, R., MILLER-HOOKS, E., HAMPSHIRE, R., BUSIC, A. Large-scale bicycle sharing systems: analysis of 

V’Elib. International Journal of Sustainable Transportation. 2012. 

NICOLAS, M., STEVENS, M., NIESSEN, M. E. AND STEELS L. 2009. NoiseTube: Measuring and mapping 

noise pollution with mobile phones. Information Technologies in Environmental Engineering, pp. 

215-228. Springer Berlin Heidelberg. 

NIGAM, K. GHANI, R. 2000. Analyzing the Effectiveness and Applicability of Co-Training. In Proceed of 

the 9th International Conference on Information and Knowledge Management. ACM press, 86-93. 

PAN, S. J. AND YANG, Q. 2010. A survey on transfer learning. IEEE Transaction on Knowledge Discovery 

and Data Engineering, 22(10), IEEE press, 1345 – 1359. 

PAN, B., ZHENG, Y., WILKIE, D. AND SHAHABI, C. 2013. Crowd Sensing of Traffic Anomalies based on 

Human Mobility and Social Media. In Proceedings of the 21th ACM SIGSPATIAL Conference on 

Advances in Geographical Information Systems. ACM Press,  

PANCIERA, K., PRIEDHORSKY, R., ERICKSON, T. AND TERVEEN, L. 2010. Lurking? Cyclopaths? A 

Quantitative Lifecycle Analysis of User Behavior in a Geowiki. In Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems, ACM Press, 1917-1926. 

PANG, L. X., CHAWLA, S., LIU, W., ZHENG, Y. 2011. On Mining Anomalous Patterns in Road Traffic 

Streams. In Proceeding of the 7th International Conference on Advanced Data Mining and 

Applications. Volume 7121, Springer press, 237-251. 

PANG, L. X., CHAWLA, S., LIU, W., ZHENG, Y. 2013. On Detection of Emerging Anomalous Traffic 

Patterns Using GPS Data. Data & Knowledge Engineering (DKE), 87, ACM press, 357-373. 

PHITHAKKITNUKOON, S., VELOSO, M., BENTO, C., BIDERMAN, A. AND RATTI, C. 2010. Taxi-aware map: 

Identifying and predicting vacant taxis in the city. In Proceeding of the 1st International Joint 

Conference on Ambient Intelligence, page 86. 

PFOSER D. 2008a. Floating Car Data. Encyclopedia of GIS. 

PFOSER, D., BRAKATSOULAS, S., BROSCH, P., UMLAUFT, M. TRYFONA, N. AND TSIRONIS, G. 2008b. 

Dynamic travel time provision for road networks. In Proceeding of the 16th International Conference 

on Advances in Geographic Information Systems. ACM Press. 

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://research.microsoft.com/apps/pubs/?id=174865
http://www.sciencedirect.com/science/article/pii/S1045926X07000134
http://www.sciencedirect.com/science/journal/1045926X


Urban Computing: Concepts, Methodologies, and Applications     ●      9: 55 
 

 
ACM Trans. Intelligent Systems and Technology, Vol. 6, No. 3, Article 9, Pub. date: November 2013. 

PRIEDHORSKY, R., MASLI, M., AND TERVEEN, L. 2010. Eliciting and Focusing Geographic Volunteer Work. 

In 13th ACM Conference on Computer Supported Cooperative Work and Social Computing. ACM 

Press, 61-70. 

RANA, R. K., CHOU, C. T., KANHERE, S. S., BULUSU, N., HU, W. 2013. Ear-Phone: A Context-Aware Noise 

Mapping using Smart Phones. In eprint arXiv:1310.4270. 

RANA, R. K., CHOU, C. T., KANHERE, S. S., BULUSU, N., HU, W. 2010. Ear-phone: an end-to-end 

participatory urban noise mapping system. In Proceedings of the 9th ACM/IEEE International 

Conference on Information Processing in Sensor Networks. ACM Press: 105-116. 

RATTI, C., SOBOLEVSKY, S., CALABRESE, F., ANDRIS, C., READES, J., MARTINO, M., CLAXTON, R., 

STROGATZ, S. H. 2010. Redrawing the Map of Great Britain from a Network of Human Interactions. 

PLoS ONE. 5(12). 

RINZIVILLO, S., MAINARDI, S., PEZZONI, F., COSCIA, M., PEDRESCHI, D., GIANNOTTI F. 2012. Discovering 

the Geographical Borders of Human Mobility. Künstl Intell, 26:253–260. 

RRO, R. 1997. PARAFAC. TUTORIAL AND APPLICATIONS. In Chemometrics and Intelligent Laboratory 

Systems, 38(2), 1997, Pages 149-171. 

SHANG, J. ZHENG, Y., TONG, W., CHANG, E. 2014. Inferring Gas Consumption and Pollution Emission of 

Vehicles throughout a City. In Proceedings of 20th SIGKDD conference on Knowledge Discovery and 

Data Mining. ACM Press.  

SHAHEEN, S., GUZMAN, S., ZHANG, H., 2010. Bikesharing in Europe, the Americas, and Asia: past, present, 

and future. In: 2010 Transportation Research Board Annual Meeting. Washington, DC, USA 

SHENG, C., ZHENG, Y., HSU, W., LEE, M. L., XIE, X. 2010. Answering Top-k Similar Region Queries. In 

Proceedings of Database Systems for Advanced Applications, Springer Press: 186-201. 

SILVIA, S., OSTERMAIER, B. AND VITALETTI A. 2008. First experiences using wireless sensor networks for 

noise pollution monitoring. In Proceedings of the workshop on Real-world wireless sensor networks. 

ACM Press, 61-65. 

SONG, R., SUN, W., ZHENG, B., ZHENG, Y., TU, C. AND LI, S. 2014. PRESS: A Novel Framework of 

Trajectory Compression in Road Networks. In proceeding of 40th International conference on very 

large data bases.  

SONG, X., ZHANG, Q., SEKIMOTO, Y., HORANONT, UEYAMA, T. S., SHIBASAKI, R. 2013. Modeling and 

Probabilistic Reasoning of Population Evacuation During Large-scale Disaster. In the Proc. of 19th 

SIGKDD conference on Knowledge Discovery and Data Mining, ACM press, 1231-1239. 

SUN, Y., ZHANG, R., ZHENG, Y. Spatial Aggregate Queries in Location-Based Social Networks, Submitted 

to SIGMOD 2014. 

TANG, L.A., ZHENG, Y., XIE, X., YUAN, J., YU, X. AND HAN, J. 2011. Retrieving k-Nearest Neighboring 

Trajectories by a Set of Point Locations. In Proceeding of the 12th Symposium on Spatial and 

Temporal Databases. Volume 6849, Springer press, 223-241. 

TANG, L.A., ZHENG, Y., YUAN, J., HAN, J., LEUNG, A., PENG, W.-C., PORTA, T. L., KAPLAN, L. 2013. A 

Framework of Traveling Companion Discovery on Trajectory Data Streams. ACM Transaction on 

Intelligent Systems and Technology, 2013. 

TANG, L.A., ZHENG, Y., YUAN, J., HAN, J., LEUNG, A., HUNG, C. C., PENG, W.C. 2012. Discovery of 

Traveling Companions from Streaming Trajectories. In Proceeding of the 28th IEEE International 

conference on Data Engineering. IEEE press, 186 – 197. 

THEODORIDIS, Y., VAZIRGIANNIS, M., AND SELLIS, T. K. 1996. Spatio-Temporal Indexing for Large 

Multimedia Applications. In Proceeding of the 3rd International Conference on Multimedia 

Computing and Systems, IEEE press, 441–448. 

THIAGARAJAN A., RAVINDRANATH, L., LACURTS, K., MADDEN, S., BALAKRISHNAN, H., TOLEDO, S., AND 

ERIKSSON, J. 2009. VTrack: accurate, energy-aware road traffic delay estimation using mobile phones. 

In Proceeding of the 7th ACM Conference on Embedded Networked Sensor Systems.  

TOOLE, J. L., ULM M., GONZÁLEZ, M. C., BAUER D. 2012. Inferring land use from mobile phone activity. 

Proceedings of the ACM SIGKDD International Workshop on Urban Computing. ACM Press: 1-8. 

TULUSAN, J., STAAKE, T., FLEISCH, E. Providing eco-driving feedback to corporate car drivers: what 

impact does a smartphone application have on their fuel efficiency? In Proceeding of the 14th ACM 

Conference on Ubiquitous Computing, ACM press: 212-215 

USA GROUND COVER: HTTP://LANDCOVER.USGS.GOV/FTPDOWNLOAD.ASP.  

http://landcover.usgs.gov/ftpdownload.asp


1: 56 ● Y. Zheng, L. Capra, O. Wolfson, H. Yang 
 

 

ACM Trans. Intelligent systems and technologies, Vol. 6, No. 3, Article 9, Pub. date: November 2014. 
 

WAKAMIYA, S., LEE, R., SUMIYA, K. 2012. Crowd-sourced urban life monitoring: urban area 

characterization based crowd behavioral patterns from Twitter. In Proceedings of the 6th 

International Conference on Ubiquitous Information Management and Communication. Article No. 

26 

WAND, M. AND JONES, M. 1995. Kernel smoothing, volume 60. Chapman & Hall/CRC. 

WANG, L., ZHENG, Y., XIE, X., MA, W. Y. 2008. A Flexible Spatio-Temporal Indexing Scheme for Large-

Scale GPS Track Retrieval, In Proceeding of the 9th International conference on Mobile Data 

Management, Beijing China. IEEE Press: 1-8. 

WANG, L., ZHENG, Y., XUE, Y. 2014. Travel Time Estimation of a Path using Sparse Trajectories. In 

Proceeding of the 20th SIGKDD conference on Knowledge Discovery and Data Mining. ACM Press. 

WATKINS, K., FERRIS, B., BORNING, A., RUTHERFORD, S., AND LAYTON, D. 2011. Where Is My Bus? 

Impact of mobile real-time information on the perceived and actual wait time of transit riders. 

Transportation Research Part A 45. 839–848. 

WEI, L. Y., ZHENG, Y., PENG, W. C. 2012. Constructing Popular Routes from Uncertain Trajectories. In 

Proceeding of the 18th SIGKDD conference on Knowledge Discovery and Data Mining. ACM Press, 

195-203.  

XIAO, X., ZHENG, Y., LUO, Q., XIE, X. 2010. Finding Similar Users Using Category-Based Location 

History. In Proceedings of the 18th ACM SIGSPATIAL Conference on Advances in Geographical 

Information Systems. ACM press, 442-445. 

XIAO, X., ZHENG, Y., LUO, Q., XIE, X. 2012. Inferring Social Ties between Users with Human Location 

History. Journal of Ambient Intelligence and Humanized Computing. December.   

XU, X., HAN, J., AND LU, W. 1999. RT-tree: An Improved R-tree Index Structure for Spatio-temporal 

Databases. In Proceeding of the 4th International Symposium on Spatial Data Handling, PP. 1040–

1049. 

XUE, A. Y., ZHANG, R., ZHENG, Y., XIE, X., HUANG, J., XU, Z. 2013. Destination Prediction by Sub-

Trajectory Synthesis and Privacy Protection against Such Prediction. In Proceeding of the 29th IEEE 

International Conference on Data Engineering, IEEE press, 254-265. 

YAMAMOTO, K., UESUGI, K. AND WATANABE, T. 2010. Adaptive routing of cruising taxis by mutual 

exchange of pathways. Knowledge-Based Intelligent Information and Engineering Systems, volume 

5178, Springer Press, 559–566. 

YE, M., YIN, Y., LEE, W., Q., LEE, D., L. 2011. Exploiting geographical influence for collaborative point-

of-interest recommendation. In Proceedings of the 34th international ACM SIGIR conference on 

Research and development in Information Retrieval. ACM Press. 

YIN, Z., CAO, L., HAN, J., ZHAI, C., HUANG, T. 2011. Geographical topic discovery and comparison. In 

Proceedings of the 20th international conference on World Wide Web. ACM press, 247-256. 

YOON, H., ZHENG, Y., XIE, X., WOO, W. 2010. Smart Itinerary Recommendation based on User-Generated 

GPS Trajectories. In Proceeding of the 7th Ubiquitous Intelligence and Computing. 6406, Springer 

press, 19-34. 

YOON, H., ZHENG, Y., XIE, X., WOO, W. 2011. Social Itinerary Recommendation from User-generated 

Digital Trails. Journal on Personal and Ubiquitous Computing, 16(5), 469-484. 

YUAN, N. J., ZHENG Y., ZHANG, L., XIE X. 2014. T-Finder: A Recommender System for Finding 

Passengers and Vacant Taxis. IEEE Transactions on Knowledge and Data Engineering.  

YUAN, J., ZHENG Y., ZHANG, L., XIE, X., SUN, G. 2011a. Where to Find My Next Passenger? , In 

Proceedings of 13th ACM International Conference on Ubiquitous Computing. ACM Press: 109-118 

YUAN, J., ZHENG, Y., AND XIE, X. 2012a. Discovering regions of different functions in a city using human 

mobility and POIs. In Proceedings of 18th SIGKDD conference on Knowledge Discovery and Data 

Mining. ACM Press: 186-194. 

YUAN, N. J., ZHENG Y., XIE X. 2012b. Segmentation of Urban Areas Using Road Networks. MSR-TR-

2012-65.  

YUAN, J., ZHENG Y., XIE, X., SUN, G. 2011b. Driving with Knowledge from the Physical World. In 

Proceedings of 17th SIGKDD conference on Knowledge Discovery and Data Mining. ACM Press: 

316-324. 

YUAN, N. J., ZHANG, F., LIAN, D., ZHENG, K., YU, S., XIE, X. 2013a. We Know How You Live: Exploring 

the Spectrum of Urban Lifestyles, In Proceeding of the ACM Conference on Online Social Networks, 

ACM press, Pages 3-14. 

http://research.microsoft.com/apps/pubs/?id=163746
http://research.microsoft.com/apps/pubs/?id=163746


Urban Computing: Concepts, Methodologies, and Applications     ●      9: 57 
 

 
ACM Trans. Intelligent Systems and Technology, Vol. 6, No. 3, Article 9, Pub. date: November 2013. 

YUAN, J., ZHENG Y., XIE, X., SUN, G. 2013b. T-Drive: Enhancing Driving Directions with Taxi Drivers' 

Intelligence. Transactions on Knowledge and Data Engineering. 25(1): 220-232. 

YUAN, J., ZHENG Y., ZHANG, C., XIE, W., XIE, X., SUN, G., HUANG, Y. 2010a. T-Drive: Driving Directions 

Based on Taxi Trajectories. In Proceedings of ACM SIGSPATIAL Conference on Advances in 

Geographical Information Systems. ACM Press: 99-108. 

YUAN, J., ZHENG Y., ZHANG, C., XIE, X., SUN, G. 2010b. An Interactive-Voting based Map Matching 

Algorithm. In proceedings of the International Conference on Mobile Data Management. IEEE Press: 

43-52. 

ZHANG, F., WILKIE, D., ZHENG, Y. XIE, X. 2013. Sensing the Pulse of Urban Refueling Behavior. In 

Proceedings of the 15th International Conference on Ubiquitous Computing. ACM Press: 13-22. 

ZHENG, Y. 2012a. Tutorial on Location-Based Social Networks. In proceeding of International 

conference on World Wide Web.  

ZHENG, Y. 2011a. Location-Based Social Networks: Users. In book: computing with spatial trajectories. 

Eds. ZHENG, Y. and ZHOU, X. Springer press: 243-276.  

ZHENG, W. C., CAO, B., ZHENG, Y., XIE, X. AND YANG, Q. 2010a. Collaborative Filtering Meets Mobile 

Recommendation: A User-centered Approach, In Proceeding of the AAAI conference on Artificial 

Intelligence. AAAI press, 236-241 

ZHENG, Y., CHEN, X., JIN, Q., CHEN, Y., QU, X., LIU, X., CHANG, E., MA, W.-Y., RUI, Y., SUN, W. 2014a. 

A Cloud-Based Knowledge Discovery System for Monitoring Fine-Grained Air Quality. MSR-TR-

2014-40. 

ZHENG, Y., CHEN, Y., LI, Q., XIE, X., AND MA, W. Y. 2010b, Understanding Transportation Modes 

Based on GPS Data for Web Applications. ACM Transaction on the Web, 4(1), 1-36. 

ZHENG, Y., CHEN, Y., XIE, X., AND MA, W. Y. 2009a. GeoLife2.0: A Location-Based Social 

Networking Service. In Proceedings of International Conference on Mobile Data Management 2009. 

IEEE Press, 357–358. 

ZHENG, Y., FENG, X., XIE, X., PENG, S., FU, J. 2010c. Detecting Nearly Duplicated Records in Location 

Datasets. In Proceedings of 18th ACM SIGSPATIAL Conference on Advances in Geographical 

Information Systems. ACM Press, 137-143. 

ZHENG, Y., HONG, J. 2012b. Proceeding of the 4th international workshop on Location-Based Social 

Networks. In conjunction with UbiComp 2012. 

ZHENG, Y., KOONIN, S. E., WOLFSON, O. 2013a. Proceeding of the 2nd International Workshop on 

Urban Computing. ACM Press. 

ZHENG, Y., LI, Q., CHEN, Y., XIE, X., AND MA, W. Y. 2008a. Understand mobility based GPS data. 

In Proceedings of the 10th International Conference on Ubiquitous Computing. ACM Press, 312–

321. 

ZHENG, Y., LIU, L., WANG, L., AND XIE, X. 2008b. Learning transportation mode from raw GPS data 

for geographic applications on the Web. In Proceedings of the 11th International Conference on 

World Wide Web. ACM Press, 247–256. 

ZHENG, Y., LIU, F., HSIEH, H. P. 2013b. U-Air: When Urban Air Quality Inference Meets Big Data. In 

Proceedings of 19th SIGKDD conference on Knowledge Discovery and Data Mining. ACM Press: 

1436-1444 

ZHENG, Y., LIU, T., WANG, Y., ZHU, Y. AND CHANG, E. 2014b. Diagnosing New York City’s Noises with 

Ubiquitous Data, In Proceeding of the 16th International Conference on Ubiquitous Computing. 

ACM Press. 

ZHENG, Y., LIU, Y., YUAN, J. AND XIE, X. 2011b. Urban Computing with Taxicabs, In Proceedings of the 

13th International Conference on Ubiquitous Computing. ACM Press, 89-98. 

ZHENG, Y. AND MOKBEL, M. F. 2011c. Proceeding of the 3rd ACM SIGSPATIAL International Workshop 

on Location-Based Social Networks. In conjunction with ACM SIGSPATIAL GIS 2011. 

ZHENG, Y., WANG, L., ZHANG, R., XIE, X., AND MA, W. Y. 2008c. GeoLife: Managing and 

understanding your past life over maps. In Proceedings of the 9th International Conference on Mobile 

Data Management. IEEE Press, 211–212. 

ZHENG, Y., WOLFSON, O. 2012C. Proceeding of the International Workshop on Urban Computing. In 

conjunction with KDD 2012.  

ZHENG, Y., AND XIE, X. 2010d. GeoLife: A Collaborative Social Networking Service among User, 

location and trajectory. IEEE Data Engineering Bulletin. 33(2), 32-40.  

http://research.microsoft.com/apps/pubs/?id=163521
http://research.microsoft.com/apps/pubs/?id=79441
http://research.microsoft.com/apps/pubs/?id=79441


1: 58 ● Y. Zheng, L. Capra, O. Wolfson, H. Yang 
 

 

ACM Trans. Intelligent systems and technologies, Vol. 6, No. 3, Article 9, Pub. date: November 2014. 
 

ZHENG, Y., XIE, X., AND MA, W. Y. 2008d. Search your life over maps. In Proceedings of the 

International Workshop on Mobile Information Retrieval. 24–27.  

ZHENG Y., AND XIE X. 2009b. Learning Location Correlation from GPS trajectories. In proceedings of the 

International Conference on Mobile Data Management, IEEE Press, 27 - 32. 

ZHENG, Y. AND XIE, X. 2011d. Learning travel recommendations from user-generated GPS traces. In 

ACM Transaction on Intelligent Systems and Technology (ACM TIST), 2(1), 2-19.  

ZHENG, Y. AND XIE, X. 2011e. Location-Based Social Networks: Locations. In book: computing with 

spatial trajectories. Eds. ZHENG, Y. and ZHOU, X. Springer press.277-308.  

ZHENG Y., ZHANG L., XIE X. AND MA W. Y. 2009c. Mining interesting locations and travel sequences from 

GPS trajectories. In Proceeding of the 18th International Conference on World Wide Web, ACM Press, 

791-800. 

ZHENG, Y., ZHANG, L., MA, Z., XIE, X., MA, W.Y. 2010e. Recommending friends and locations based on 

individual location history. In ACM Transaction on the Web, 5(1), ACM Press. 

ZHENG, W. C., ZHENG, Y., XIE, X. AND YANG, Q. 2010f. Collaborative location and activity 

Recommendations with GPS History Data. In Proceeding of the 19th International Conference on 

World Wide Web, ACM Press, 1029-1038. 

ZHENG, W. C., ZHENG, Y., XIE, X. AND YANG, Q. 2012d. Towards Mobile Intelligence: Learning from 

GPS History Data for Collaborative Recommendation. Artificial Intelligence Journal. Volumes 184–

185, Page 17-37. 

ZHENG, K., ZHENG, Y., YUAN, N. J., SHANG, S., ZHOU, X. 2014. Online Discovery of Gathering Patterns 

over Trajectories, IEEE Transaction on Knowledge Discovery and Engineering, 2014. 

ZHENG, K., ZHENG, Y., YUAN, N. J., SHANG, S. 2013b. On Discovery of Gathering Patterns from 

Trajectories. In Proceeding of the 29th IEEE International conference on Data Engineering. IEEE 

Press, 242-253.  

ZHENG, Y. AND ZHOU, X. 2011f. Computing with Spatial Trajectories. Springer 2011. ISBN: 978-1-4614-

1628-9.  

ZHU, XIAOJIN. Semi-supervised learning literature survey. Computer Sciences, University of Wisconsin-

Madison (2008). 

ZIMMERMAN, J. TOMASIC, A., GARROD, C., YOO, D., HIRUNCHAROENVATE, C., AZIZ, R., 

THIRUVENGADAM, N. R., HUANG, Y. AND STEINFELD, A. 2011. Field trial of Tiramisu: crowd-

sourcing bus arrival times to spur co-design. In Proceeding of the 2011 annual conference on Human 

factors in computing systems. ACM Press: 1677-1686. 

 


